
A0-A115 106 LOCKMEED-CALIFORNIA CO BURBANK F/6 11/4 ADVANCED RESIDUAL STRENGTH DEGRADATION RATE MODELING FOR ADVANC-ETC(U) JUL 81 K M LAURAITIS, J T RYDER, D E PETTIT F33615-77-C-3004 UNCLASSIFIED LR-88360-19 AFWAL-TR-79-3005-VOL-3 ML 2

AFWAL-TR-79-3095 VOLUME III

70

 ∞

-

10

AD A 11

ADVANCED RESIDUAL STRENGTH DEGRADATION RATE MODELING FOR ADVANCED COMPOSITE STRUCTURES VOLUME III - APPENDIXES TO REPORT FOR TASKS II AND III

K. N. Lauraitis

J. T. Ryder

D. E. Pettit

Lockheed-California Company

Burbank, California

July 1981 Final Report for 1 July 1979 to 29 May 1981

Approval for public release; distribution unlimited

FILE COPY

FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

82 06 07 022

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

GEORGE P. SENDECKYJ, Aerospace Engineer Fatigue, Fracture & Reliability Group

DAVEY L. SMITH, Chief Structural Integrity Branch

Doney 2 Smith

FOR THE COMMANDER

RALPH L. KUSTER, JR., Colonel, USAF

Structures & Dynamics Division Flight Dynamics Laboratory

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify $\underline{AFWAI}/\underline{FIRFC}$, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/24 May 1982 - 430

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION F	READ INSTRUCTIONS BEFORE COMPLETING FORM	
T. REPORT NUMBER AFWAL-TR-79-3095 Volume III	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Sublitle) Advanced Residual Strength Degradation Rate Modeling for Advanced Composite Structures		5. TYPE OF REPORT A PERIOD COVERED Final Report 1 July 1979 to 29 May 1981
		6. PERFORMING ORG. REPORT NUMBER LR 28360-19
7. AUTHOR(s)		B. CONTRACT OR GRANT NUMBER(s)
K. N. Lauraitis		F33615-77-C-3084
J. T. Ryder		
D. E. Pettit		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Lockheed-California Company		Project No. 2401
Division of Lockheed Aircraft Corporation		Work Unit 24010117
Burbank, California 91520		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE July 1981
Flight Dynamics Laboratory		
Air Force Wright Aeronautics Labor	atory, Air Force	13. NUMBER OF PAGES 384
Systems Command Wright-Patterson	from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING. SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release: distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

C. Jun

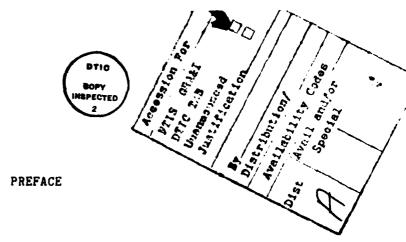
18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

composites, graphite/epoxy, impact damage, damaged holes, fatigue, damage propagation, residual strength, NDI

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report presents the results of the last two tasks of a three task program focusing on the study of relationship between damage propagation and residual strength of graphite/epoxy laminates. Specimens of two laminate types, a 32-ply quasi-isotropic and 24-ply 67%-0, containing a centered poorly drilled hole were evaluated in this study. Baseline static tension and compression tests were conducted at high and low strain rates and at elevated temperature. Compression tests were conducted for two restraint conditions, the full platen fatigue supports with 2.15 in. (55mm) window and 4-bar buckling supports.


DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Continued on next page

Stress vs. life (S-N) fatigue data were generated at a stress ratio of R=-1 for each of the damaged laminates. Twenty replicate specimens for each laminate were fatigue tested to failure at a single stress level (R=-1) with the damage growth for each specimen monitored a minimum of ten times during its life to determine the fatigue life and damage growth distributions and pertinent statistical parameters. Based on these results, five cycle levels were selected for the residual strength study. Twenty-three specimens of each laminate were inspected, cycled to one of the five preselected N values and Holscanned again. Three of the replicates were destructively analyzed while the other surviving specimens were tested in static tension or compression. This sequence was repeated for each of the five N values.

Results indicated significant reduction in initial static tension and compression strengths due to the damaged hole condition and a further decrease in strength at the higher loading rate with a larger drop in compression than in tension. Fatigue cycling of the 24-ply specimens at \pm 35 ksi (241 MPa) (R =-1) produced data which were dispersed over more than two orders of magnitude while data scatter was slightly more than one order of magnitude for the 32-ply coupons tested at a stress level of + 22 ksi (152 MPa). As expected from the life data, damage growth for the 32-ply specimens was more wellbehaved than for the 24-ply. However, large scatter in damage size was evident for both laminates and so no useful relationship between damage size and life could be established. Residual static properties of either laminate were not adversely affected by R = -1 fatigue cycling up to the 80% probability of survival life. Slight but insignificant increases (6-11%) in tensile residual strength and similar decreases in compression were noted for the 32-ply laminate. Both tension and compression residual strength tended to increase slightly as the number of cycles completed increased for the 24-ply laminate. Residual #trength could not be related to damage size, not only due to the data dispersion but also because no definitive change in residual strength was observed.

A limited test program was conducted to assess the effect of different fatigue and environmental test conditions on residual strength and damage growth. The variables evaluated were: A) Specimen restraint (4-bar support); B) stress ratio, R = -0.3; and C) elevated temperature, $180^{\circ}F$ (82°C). The Case A loading produced lives which were within the scatter band of tests conducted with the platen supports and very similar damage growth and residual strength behavior. *Inder the R =-0.3 loading both laminates completed 2 million cycles without fatlure. Most notable was the change in damage development, especially for the 24-ply laminate for which essentially no growth in the width direction was evident with extensive growth in the length direction. This longitudinal damage growth reduced the notch acuity resulting in significant increases in tensile residual strength with increasing number of cycles completed. Damage growth for the 32-ply laminate at R = -0.3 was also greater in the length direction, but growth in both directions did occur. For Case C, there appeared to be an order of magnitude decrease in life due to the elevated temperature exposure during cycling with more rapid initial growth for the 24-ply laminate. The life of the 32-ply laminate appeared to be shortened also but not as severely.

This report has been issued in three volumes. Volume I details the work completed under Task I, Preliminary Screening. Volumes II and III encompass the last two tasks of the investigation into the delamination growth and residual strength behavior of initially damaged graphite/epoxy laminates. Volume II includes the results of Task II - Damage Growth and Residual Strength Degradation Prediction and Task III - Effect of Fatigue Loading/Environment Perturbations. The tabulated data for these tasks are available in this volume of appendixes, Volume III.

The work reported herein was accomplished under Contract F33615-77-C-3084, Project 2401, Work Unit 24010117, sponsored by the Flight Dynamics Laboratory of the Air Force Wright Aeronautical Laboratories, Air Force Systems Command, Wright-Patterson AFB, Ohio 45433. Dr. G. P. Sendeckyj, AFWAL/FIBE, was the Air Force Program Monitor.

The program which was conducted by the Structures and Materials Department of the Lockheed-California Company, was directed by the Co-Principal Investigators, Ms. K. N. Lauraitis and Mr. D. E. Pettit of the Fatigue and Fracture Mechanics Laboratory. Analytical and conceptual assistance was provided by Dr. J. T. Ryder of the same laboratory. The support and contributions of the Materials Laboratory personnel, Mr. W. E. Krupp, Group Engineer, Mr. R. C. Young, Specimen Fabrication, Mr. S. Krystkowiak, Fractography, and the Fatigue and Fracture Mechanics Laboratory Personnel, Mr. J. M. Cox, Data Reduction, Mr. D. Diggs, Mr. P. Mohr, Mr. F. Pickel, Mr. W. Renslen, Mr. L. Silvas and Mr. C. Spratt in the area of Mechanical Testing are gratefully acknowledged.

TABLE OF CONTENTS

Vo:	lume	1

Section		Page No.
1	INTRODUCTION	1
	1.1 Technical Background	1
	1.2 Program Overview	1
2	TASK I OVERVIEW	5
	2.1 Material/Laminate Selection	5
	2.2 Specimen Design	6
	2.3 Selection of Damage Type	9
	2.4 Evaluation and Selection of NDI Method for damage Monitoring	11
	2.5 Task I Test Plan	15
3	SPECIMEN FABRICATION AND QUALITY CONTROL	19
	3.1 Material Quality Control Results	19
	3.2 Panel Fabrication	22
	3.3 Preliminary Damage Development Study	22
	3.3.1 Impact Damage Study	22
	3.3.1.1 Evaluation of Impact Damaged 32-Ply Quasi- Isotropic Laminates	28
	3.3.1.2 Evaluation of Impact Damaged 24-Ply 67% 0° Fiber Laminates	33

Section		Page No.
	3.3.1.3 Final Selection of Impact Conditions	41
	3.3.2 Damaged Hole Drilling Study Results	41
	3.4 Specimen Randomization and Fabrication	53
4	EXPERIMENTAL PROCEDURES	65
	4.1 Static Tension Test Procedures	65
	4.2 Static Compression Test Procedures	65
	4.3 Fatigue Test Procedures	68
5	STATIC TEST RESULTS	71
	5.1 Static Tension Test Results	71
	5.1.1 Quality Control Tensile Test Results	71
	5.1.2 Static Tension Test Results for 24- Ply 67% 0° Fiber, T300/5208 Laminate Specimens Containing Impact Damage	75
	5.1.3 Static Tension Test Results for 24- Ply 67% 0 Fiber T300/5208 Laminate Specimens Containing Damaged Holes	84
	5.1.4 Static Tension Test Results for 32- Ply Quasi-Isotropic T300/5208 Laminate Specimens Containing Impact Damage	88
	5.1.5 Static Tension Test Results for 32- Ply Quasi-Isotropic T300/5208 Laminate Specimens Containing a Damaged Hole	98

Section				Page No.
	5.2	Column	Buckling Test Results	98
		5.2.1	24-Ply 67% 0° Fiber Laminate Results	102
		5.2.2	32-Ply Quasi-Isotropic Laminate Results	102
	5.3	Static Suppor	Compression Test Results with Fatigue	102
		5.3.1	Compression Test Results for Impact Damaged 24-Ply Laminates	107
		5.3.2	Compression Test Results for Damaged Hole 24-Ply Laminates	107
		5.3.3	Comparison of the Compression Test Results for the 24-Ply Laminate	111
		5.3.4	Compression Test Results for Impact Damaged 32-Ply Laminates	111
		5.3.5	Compression Test Results for Damaged Hole 32-Ply Laminates	117
		5.3.6	Comparison of the Compression Test Results for the 32-Ply Laminate	117
		5.3.7	Summary of Compression Results	123
6	FATI	GUE TES	T RESULTS	127
	6.1	Fatigu Lamina	e Results for the 24-Ply 67% 0° Fiber te	127
	6.2	_	e Results for the 32-Ply Quasi-	127

Section		Page No.
7	DAMAGE GROWTH RESULTS	141
	7.1 Buckling Guide Considerations	141
	7.2 Recorded Data Available for Analysis	142
	7.3 System Calibration and Area Measure- ment Procedures	145
	7.4 Damage Growth in 24-Ply Laminates with a Damaged Hole	148
	7.5 Damaged Growth in 24-Ply Laminates with an Impact Damage	153
	7.6 Damage Growth in the 32-Ply Laminate with a Damaged Hole	168
8	EVALUATION OF THE EFFECT OF TBE	189
	8.1 X-Ray Procedures	189
	8.2 Static Compression Test Results	190
	8.3 Fatigue Test Results	194
	8.4 Effect of TBE on Compression Strength and Fatigue Life	194
	8.5 Damage as Indicated by Two Methods	197
	8.6 The Effect of TBE on Fatigue Damage Growth	214
9	SUMMARY OF TASK I RESULTS	221
	9.1 Initial Static Tension Results	221
	0.2 Initial Static Compression Perults	221

Section		Page No
	9.3 Fatigue Results	222
	9.4 Damage Growth Results	222
	9.5 NDI Comparison Results	223
	9.6 Concluding Observations	224
10	TASK II TEST MATRIX OVERVIEW	225
	APPENDIX A QUALITY CONTROL TEST RESULTS	A-1
	APPENDIX B INITIAL DAMAGE DIMENSIONS	B-1
	APPENDIX C TYPICAL DAMAGE GROWTH RESULTS	C-1
	REFERENCES	R-1

TABLE OF CONTENTS

Vol	ume	- 11

Section		Page No.
1	INTRODUCTION	1
	1.1 Program Overview	4
	1.2 Summary of Task I - Preliminary Screening	5
	1.2.1 Summary of Task I Static Test Results	6
	1.2.2 Summary or Task I Fatigue Results	12
	1.2.3 Summary of The Damage Growth Results	12
	1.2.4 Summary of TBE Enhanced X-Ray Results	18
2	OVERVIEW OF TASKS II AND III	27
	2.1 Material Selection and Specimen Design	27
	2.2 Selection of Damage type and NDI Mehtod	30
	2.3 Procedure for Random Specimen Selection	31
	2.4 Task II Experimental Program	33
	2.5 Task III Experimental Program	36
3	MATERIAL AND SPECIMEN CHARACTERIZATION TASKS II AND III	39
	3.1 Prepreg Quality Control Results	39
	3.2 Panel and Specimen Fabrication	45

Section		Page No.
4	EXPERIMENTAL PROCEDURES	51
	4.1 Static and Compression Test Procedures	51
	4.2 Fatigue Test Procedures	52
	4.3 Damage monitoring Method	54
	4.4 Damage measurement Procedures	60
	4.4.1 Recorded Data Available For Analysis	60
	4.4.2 System Calibration and Area Measurement Procedures	63
	4.5 Destructive Inspection Procedures	65
	4.5.1 Resin Burn-Out (Deply) Procedure	65
	4.5.2 Metallographic Specimen Preparation	67
5	STATIC TENSION AND COMPRESSION RESULTS	69
	5.1 Quality Control Tension Test Results Tasks II and III	75
	5.2 Static Tension and Compression Results For Damaged 24-Ply Laminate Specimens	82
	5.3 Static Tension and Compression Results For Damagaed 32-Ply Laminate Specimens	87

Section				Page No.
	5.4	Damage	Growth Under Static Loading	94
	5.5		Test Results for Damaged Laminates vated Temperature	94
	5.6		Test Results for Damaged Laminates vated Temperature	101
	5.7	Compar	ison of Task I and Task II Data	112
6	TASK	II FAT	IGUE RESULTS	123
	6.1	Fatigu	e Life Results	123
		6.1.1	Fatigue Life Distribution for the 24-Ply Laminate	123
		6.1.2	Fatigue Life Distribution for the 32-Ply Laminates	128
	6.2	Damage	Growth Under Fatigue Loading	134
		6.2.1	24-Ply Damage Growth Results	135
		6.2.2	Damage Growth Results for the 32-Ply Laminates	153
	6.3	Residu	al Strength Results	170
		6.3.1	Residual Strength Results for the 24-Ply Laminate	178
		6.3.2	Residual Strength Results for the 32-Ply Laminate	183
7	TASK	III FA	TIGUE RESULTS	201
	7.1	Fatigu	e Test Parameter Selection For	201

Section		Page No
	7.1.1 Case A	201
	7.1.2 Case B	203
	7.1.3 Case C	205
	7.2 Fatigue and Damage Growth Behavior	205
	7.3 Residual Strength Results	218
8	DAMAGE CHARACTERIZATION	237
	8.1 Metallographic Examination	238
	8.2 Examination by Burn-Out and Deplying	238
9	ANALYSIS OF RESULTS	257
	9.1 Data Assessment	257
	9.1.1 Mechanics of Fracture in Notched Coupons	259
	9.1.2 Assessment of Damage	261
	9.2 Analysis/Correlative Methodology	263
	9.2.1 Methodology for Relating Damage to Residual Strength and Fatigue Life	266
10	SUMMARY AND CONCLUSIONS	269
	REFERENCES	279

TABLE OF CONTENTS: Proceed to the second

Volume III

Section		Page No.
APPENDIX A	QUALITY CONTROL PLAN,	A- 1
APPENDIX B	SPECIMEN WEIGHT MEASUREMENTS,	B 1
APPENDIX C	STATIC TEST DATA	C-1
APPENDIX D	DAMAGE GROWTH CHARACTERISTICS UNDER FATIGUE LOADING	D-1
APPENDIX E	DAMAGE CHARACTERISTICS OF SPECIMENS TESTED FOR RESIDUAL STRENGTH	E-1
APPENDIX F	DAMAGE MEASUREMENTS OF SPECIMENS TESTED FOR RESIDUAL STRENGTH	F-1
APPENDIX G	DAMAGE AS DETERMINED BY METALLOGRAPHIC SECTIONING	G-1
APPENDIX H	COMPARISON OF DAMAGE AS DETERMINED BY HOLSCAN ULTRASONIC C-SCAN AND DIB ENHANCED X-RAY.	H - 1
APPENDIX I	DAMAGE ON INDIVIDUAL LAYERS OF SPECIMENS DEPLIED AFTER FATIGUE CYCLING	I- 1
APPENDIX J	STATISTICAL ANALYSIS OF PANEL VARIABILITY	J-1
APPENDIX K	DISCUSSION OF WEIBULL FUNCTION AND PARAMETER ESTIMATION PROCEDURES	K-1

17

LIST OF ILLUSTRATIONS

AOTIME		
Figure	No.	Page No
1	3-Inch Wide Specimen Configuration, Drawing TL1038	8
2	Typical Metallographic Sections of Panel 18Y1156, 24-ply T300/5208	20
3	Typical Metallographic Sections of Panel 2SY1156, 32-ply T300/5208	21
4	Typical Tool Drop Simulation Set Up	29
5	Ultrasonic C-Scan Results of the Preliminary Impact Damage Study of the 32-Ply Quasi-Isotropic Laminate	32
6	Site No. 4 Viewed from Impact Side, 32-Ply Panel No. 2TY-1222	34
7	Site No. 4 Viewed from Back Side, 32-Ply Panel No. 2TY-1222	35
8	Site No. 15 Viewed from Back Side, 32-Ply Panel No. 2TY-1222	36
9	Site No. 15 Viewed from Impact Side, 32-Ply Panel No. 2TY-1222	37
10	Site No. 22 Viewed from Impact Side, 32-Ply Panel No. 2TY-1222	38
11	Site No. 22 Viewed from Back Side, 32-Ply Panel No. 2TY-1222	39
12	Ultrasonic C-Scan Results of the Preliminary Impact Damage Study on the 24-Ply 67% O° Fiber Laminate	40
13	Site No. 6 Viewed from Back Side, 24-Ply Panel No. 1TY-1222	42
14	Site No. 6 Viewed from Impact Side, 24-Ply Panel No. 1TY-1222	43
15	Site No. 13 Viewed from Impact Side, 24-Ply Panel No. 1TY-1222	7174
16	Site No. 13 Viewed from Back, 24-Ply Panel No. 1TY-1222	45
17	Site No. 17 Viewed from Impact Side, 24-Ply Panel No. 1TY-1222	46
18	Site No. 17 Viewed from Back Side, 24-Ply Panel No. 1TY-1222	47
19	Site No. 24 Viewed from Impact Side, 24-Ply Panel No. 1TY-1222	48
20	Site No. 24 Viewed from Back Side, 24-Ply Panel No. 1TY-1222	49
21	Ultrasonic C-Scan Results for 32-Ply Laminate Hole Study	51
22	Ultrasonic C-Scan Results for 24-Ply Laminate Hole Study	52
23	Variability of Hole Damage for Drilling Method No. 1 in 32-Ply Laminate	54
24	Variability of Hole Damage for Drilling Method No. 3 for 32-Fly Laminate	55
25	Variability of Hole Damage for Drilling Method No. 5 for 32-Ply Laminate	56
26	Variability of Hole Damage for Drilling Method No. 1 for	57

Volume Figure		Page No
27	Variability of Hole Damage for Drilling Method No. 3 for 24-Ply Laminate	58
28	Variability of Hole Damage for Drilling Method No. 5 for 24-Ply Laminate	59
29	Typical Master Panel Layout Prepared for Each Panel	60
30	Composite Specimen Column Test Fixture	67
31	Fatigue Buckling Guide Design	69
32	Typical Stress-Strain Curve Measured for the 32-Ply Quasi- Isotropic Laminate	74
33	Schematic of the Typical Stress Strain Curve Measured for the 24-Ply 67% 0° Fiber Laminate	76
34	Typical Impact Damage, 24-Ply 67% 0° Fiber T300/5208 Laminate	80
35	Typical Type 1 Tension Failure of Impact Damaged 24-Ply 67% O°Fiber Laminate	83
36	Typical Type 2 Tension Failure Mode of Impact Damaged 24-Ply 67% 0° Fiber Laminates	83
37	Type 3 Failure Modes observed in Low Strength Tension Failures of Impact Damaged 24-Ply 67% 0° Fiber Laminates	85
38	Typical C-Scan Hole Damage Sizes in Tension Test Specimens of the 24-Ply 67% O° Fiber Laminate	87
39	Comparison of the 2-Parameter Weibull Distributions for Tension Test Results of Undamaged, Impact Damaged, and Damaged Hole 24-Ply Laminates	89
40	Typical Fracture Characteristics of Damaged Hole 24-Ply Laminates Tested in Tension	90
41	Correlation of Fracture Strength with Damage Size for Impact Damaged 32-Ply Laminates	93
42	Damage Size Correlation with Static Tensile Strength for Impact Damaged 32-Ply Quasi-Isotropic Iaminates	94
43	Typical Fracture Features of Impact Damaged 32-Ply Laminate Tension Test Failures	96
44	Two Parameter Weibull Curve Fit for Undamaged and Damaged	100

Volume	I	
Figure	No.	Page No.
45	Typical Fracture Features of Damaged Hole 32-Ply Laminate Tested in Tension	101
46	Column Buckling Failures, 24-Ply Iaminate	104
47	Column Buckling Failures, 32-Ply Laminate	106
48	Typical Fracture Features of Damaged 24-Ply Laminate Tested in Compression with the Fatigue Support	109
49	Comparison of the Two Parameter Weibull Curve Fit for Damaged 24-Ply Laminates	112
50	Comparison of Damaged 24-Ply Laminate Column Buc'ling Results with Compression Test Results Using the Fatigue Support	114
51	Typical Load vs Deflection Compression Test Curve for Impact Damaged 32-Ply Laminate	116
52	Typical Fracture Features of Impact Damaged 32-Ply Laminate Specimens	118
53	Typical Fracture Features of Damaged Hole 32-Ply Laminate Specimens	120
54	Two Parameter Weibull Data Fits for Damaged 32-Ply Laminate Specimens	121
55	Comparison of Compression Results obtained with the Fatigue Support with the Column Buckling Behavior of Damaged 32-Ply Laminates	122
56	Fatigue Life Data for Damaged Hole 24-Ply, 67% 0° Fiber Laminates, R = -1, 5 Hz	128
57	Fatigue Life Data for Impact Damaged 24-Ply, 67% 0° Laminates	129
58	Fatigue Fracture Appearance of Damaged Hole 24-Ply 67% 0° Fiber, Specimens	132
59	Fracture Appearance of Impact Damaged 24-Ply 67% 0° Fiber Laminates Fatigue Tested at ± 36.8 ksi (254 MPa)	133
60	Fatigue Life Data for Damaged Hole 32-Ply Quasi-Isotropic Laminates, $R = -1$, 5 Hz	134
61	Fatigue Life Data for Impact Damaged 32-Ply Quasi-Isotropic Laminates, R = 1, 5 Hz	135

Figure No.		Page No.
62	Typical Failures in Damaged Hole 32-Ply Quasi-Isotropic Specimens	139
63	Typical Failures in Impact Damage 32-Ply Quasi-Isotropic Specimens	140
64	Typical Set of Holscan Data for Each Damage Growth Interval	143
65	Typical Data Set Showing Single Pass B-Scan Results at Selected Locations Through the Damage	144
66	Illustration of the Damage Zone Size Parameters Evaluated	146
67	C-Scan Photos of Calibration Block Used	147
68	Damage Growth Behavior of Damaged Hole 24-Ply 67% 0° Fiber Specimens, R = -1, σ_{max} = 41 ksi (283 MPa)	149
69	Damage Growth Behavior of Damaged Hole 24-Ply 67% 0° Fiber Specimens, $R = -1$, $\sigma_{max} = 41$ ksi (283 MPa)	150
70	Damage Growth Behavior of Damaged Hole 24-Ply 67% 0° Fiber Specimens, R1, σ_{max} = 38 ksi (262 MPa)	151
71	Comparison of the Damage Growth Characteristics of HA-1 with other Typical Specimens, R = -1, σ_{max} = 38 ksi (262 MPa)	152
72	Damage Growth Behavior of Damaged Hole 24-Ply 67% 0° Fiber Specimens, $R = -1$, $\sigma_{max} = 38$ ksi (262 MPa)	154
73	Damage Growth Behavior of Damaged Hole 24-Ply 67% 0° Fiber Specimens, $R = -1$, $\sigma_{max} = 34$ ksi (234 MPa)	155
74	Damage Growth Behavior of Damaged Hole 24-Ply 67% 0° Fiber Specimens, R = -1, $\sigma_{\rm max}$ = 34 ksi (234 MPa)	156
75	Typical Demage Growth Characteristics of Damaged Hole 24-Ply 67% 0° Fiber Specimens. Specimen JA-8, $\sigma_{\rm max}$ = 34 (234 MPa)	157
76	Typical Damage Growth Characteristics of Damaged Hole 24-Ply 67% 0° Fiber Specimens. Specimen IA-7, $\sigma_{\rm max}$ = 41 ksi (283 MPa)	159
77	Area Damage Growth Behavior of Demaged Hole 24-Ply 67% 0° Fiber Specimens, R = -1, g = 44 ksi (303 MPa)	161

Figure	No.	Page No.
78	Area Damage Growth Behavior of Damaged Hole 24-Ply 67% 0° Fiber Specimens, R = -1, σ_{max} = 30 ksi (207 MPa)	162
79	Area Damage Growth Behavior of Damaged Hole 24-Ply 67% 0° Fiber Specimens, $R = -1$, $\sigma_{max} = 26$ ksi (179 MPa)	163
80	Damage Growth Behavior of Impact Damaged 24-Ply 67% 0° Fiber Specimens, $R = -1$, $c_{max} = 42.75$ ksi (295 MPa)	164
81	Damage Growth Behavior of Impact Damaged 24-Ply 67% 0° Fiber Specimens, $R = -1$, $\sigma_{max} = 36.8$ ksi (254 MPa)	165
82	Damage Growth Behavior of Impact Damaged 67% 0° Fiber Specimens, $R = -1$, $\sigma_{max} = 31.5$ ksi (217 MPa)	167
83	Damage Growth Characteristics of Impact Damaged Specimen JA-7, 24-Ply 67% 0° Laminate, R = -1, cmax = 42.75 ksi (295 MPa)	169
84	Damage Growth Characteristics of Impact Damaged Specimen LC-22, 24-Ply 67% 0° Laminate, R = -1	170
85	Damage Growth Characteristics of Impact Damaged Specimen JU-22, 24-Ply 67% 0° Laminate, R = -1, $\sigma_{\rm max}$ = 31.5 ksi (217 MPa)	173
86	Damage Growth Characteristics of Impact Damaged 24-ply Laminates, $R = -1$, $\sigma_{max} = 27.6$ ksi (199 MPa)	174
87	Typical Change in Maximum Damage Height, Y, vs Fatigue Cycles for Damaged Hole 32 -Fly Quasi-Isotropic Laminates, $R = -1$	175
88	Comparison of Change in Damage Area and Damage Width for Damaged Hole 32-Ply Quasi-Isotropic Specimens $r = -1$, $\sigma_{max} = 30$ ksi (207 MPa)	176
89	Comparison of Change in Damage Area and Damage Width for Damaged Hole 32-Ply Quasi-Isotropic Specimens, $R = -1$, $\sigma_{max} = 26$ ksi (179 MPa)	177
90	Comparison of Change in Damage Area and Damage Width for Damaged Hole 32 Ply Quasi-Isotropic Specimens, $R = -1$, $c_{max} = 20$ ksi (138 MPa)	178
91	Damage Growth Characteristics of Damaged Hole Specimen DA-5, 32-Fly Quasi-Isotropic Lamirate, R = -1, omax = 26 ksi	180

Figure No.		Page No.
92	Damage Growth Characteristics of Damaged Hole Specimen BC-28, 32-Ply Quasi-Isotropic Laminate, R = -1, $\sigma_{\rm max}$ = 23 ksi (158 MPa)	182
93	Damage Growth Characteristics of Damaged Hole Specimen CA-5, 32 Ply Quasi-Isotropic T300/5208 Laminate, R = -1, c _{max} = 20 ksi (138 MPa)	186
94	Effect of Delay in X-Ray Exposure after TRE Soak, Damage Hole Specimen IA-1, 24-Ply 67% 0° T300/5205 Laminate, Specimen Preloaded to 28 ksi, σ_u = 47.9 ksi	190
95	Effect of Delay in X-Ray Exposure after the toak, Damage Hole Specimen BA-9, 32-Ply Quasi-Isotropic 1300/5208 Iaminate, R = -1, σ_{max} = 30 ksi (207 MPa), N_f = 1,709 Cycles	191
9 6	Schematic of Typical TBE X-Ray Demage Size Result	197
97	Comparison of Baseline and TBE Exposed Specimen Fatigue Results, R = -1, 5 Hz	198
98	X-Ray Examination of Static Compression Specimens, 24-Ply 67% 0° T300/5208 Laminate, Specimens HA-5, KC-24, and HA-3	199
99	X-Ray Examination of Static Compression Specimens, 32-Ply Quasi-Isotropic T300/5208 Laminate; Specimens CA-8, AC-30 and EC-29	200
100	Fatigue Damage as Detected by Holscan and X-Ray for Specimen MB-13, 24-Ply 67% 0° Laminate, R = -1, $\sigma_{\rm max}$ = 41 ksi (283 MPa), N _p = 3420 Cycles	201
101	Fatigue Damage as Detected by Holscan and X-Ray for Specimen KB-16, 24-Ply 67% 0° Iaminate, $R=-1$, $\sigma_{\rm max}=38$ ksi (262 MPa), $N_{\rm f}=162,717$ Cycles	202
102	Fatigue Damage as Detected by Holscan and X-Ray for Specimen IA-4, 24-Ply 67% 0° Laminate, R = -1, 7 = 34 ksi (234 MPa), N _r = 226,390 Cycles	203
103	Fatigue Damage as Detected by Holscan and X-Ray for Specimen RA-9, 32-Ply Quasi-Isotropic Laminate R = -1, $\sigma_{\rm max}$ = 30 ksi (207 MPa), N _f = 1,709 Cycles	204
104	Fatigue Damage as Detected by Holscan and X-Ray for Specimen AA-3, 32-Ply Quasi-Isotropic Laminate R = -1, σ_{max} = 26 ksi (179 MPa), N _f = 10,565 Cycles	205

Volume	I	
Figure	No.	Page No.
105	Fatigue Damage as Detected by Holscan and X-Ray for Specimen EB-13, 32-Ply Quasi-Isotropic Laminate, $R = -1$, $\sigma_{\text{max}} = 20$ ksi (138 MPa), $N_f = 392,584$	206
106	Damage Size Comparison from X-Ray and Holscan Results, 24-Ply 67% 0° Fiber Laminate σ_{max} = 41 ksi (282 MPa)	208
107	Damage Size Comparison from X-Ray and Holscan Results, 24-Ply 67T 0° Fiber Laminate, σ_{max} = 38 ksi (261 MPa)	209
108	Damage Size Comparison from X-Ray and Holscan Results, 24-Ply 67% 0° Fiber Laminate, $\sigma_{\rm max}$ = 34 ksi (234 MPa)	210
109	Damage Size Comparison from X-Ray and Holscan Results, 32-Ply Quasi-Isotropic Laminate, 7 = 30 ksi (206 MPa)	211
110	Damage Size Comparison from X-Ray and Holscan Results, 32-Ply Quasi-Isotropic Laminate, omax = 26 ksi (179 MPa)	212
111	Damage Size Comparison from X-Ray and Holscan Results, 32-Fly Quasi-Isotropic Laminate, omax = 20 ksi (138 MPa)	213
112	Comparison of Holscan Damage Size for Baseline Specimens and Specimens Exposed to TBE X-Ray Procedures, 24-Ply 67% 0° Fiber Laminate, 7 = 41 ksi (283 MPa)	215
113	Comparison of Holscan Damage Size for Baseline Specimens and Specimens Exposed to TBE X-Ray Procedures, 24-Ply 67% 0° Fiber Laminate, σ_{max} = 38 ksi (262 MPa)	216
114	Comparison of Holscan Damage Size for Baseline Specimens and Specimens Exposed to TBE X-Ray Procedures, 24-Ply 67% 0° Fiber Laminate, σ_{max} = 34 ksi (234 MPa)	217
115	Comparison of Holscan Damage Size for Baseline Specimens and Specimens Exposed to TBE X-Ray Procedures, 32-Ply Quasi-Isotropic Laminate, $\sigma_{\rm max}$ = 30 ksi (207 MPa)	218
116	Comparison of Holscan Damage Size for Baseline Specimens and Specimens Exposed to TBE X-Ray Procedures, 32-Ply Quasi-Isotropic Laminate, $\sigma_{\text{max}} = 26$ ksi (179 MPa)	219
117	Comparison of Holscan Damage Size for Baseline Specimens and Specimens Exposed to TBE X-Ray Procedures, 32-Ply Quasi-Tsotropic Leminate. G. # 20 ksi (138 MPa)	220

LIST OF ILLUSTRATIONS

Volume II		
Figure No.		Page No
1	Comparison of the Two Parameter Weibull Distribution for Tension Test Results of Undamaged, Impact Damaged, and Damaged Hole 24-Ply Laminates	. 7
2	Comparison of the Two Parameter Weibull Curve Fit for Damaged 24-Ply Laminates	8
3	Correlation of Tension Strength with Damage Size for Impact Damaged 32-ply Laminates	9
4	Two Parameter Weibull Data Fits for Damaged 32-Ply Laminate Specimens	10
5	Two Parameter Weibull Curve Fit for Undamaged and Damaged Hole Specimens of 32-Ply Laminate	11
6	Fatigue Life Data for Damaged Hole Specimens of 24 Ply, 67% 0 Laminates, R = -1, 5 Hz	13
7	Fatigue Life Data for Impact Damaged 24 Ply, 67% 0 Laminates, R = -1, 5 Hz	14
8	Fatigue Life Data for Damaged Hole $32-Ply$ Quasi-Isotropic Laminates, $R=-1$, $5~Hz$	15
9	Fatigue Life Data for Impact Damaged Specimens of 32 -Ply Quasi-Isotropic Laminates, $R = -1$, 5 Hz	16
10	Damage Growth Characteristics of Impact Damaged 24-Ply 67% 0 Laminate Specimens, 72 F (21 C), R = -1, Max Stress = 36.8 ksi	17

Volume II Figure No.		Page No.
11	Damage Growth Characteristics of 24-Ply 67% 0° Laminate Specimens Containing a Damaged Hole. 72° F (21°C), R = -1, Max Stress = 34 ksi (234 MPa)	19
12	Damage Growth Characteristics of 32-Ply Quasi-Isotropic Laminate Specimens Containing a Damaged Hole. 72°F (21°C), R =-1, Max Stress = 26 ksi (179 MPa)	20
13	Damage Growth Characteristics of 32-Ply Quasi-Isotropic Laminate Specimens Containing a Damaged Hole. 72°F (21°C), R=-1, Max Stress = 20 ksi (138 MPa)	21
14	Damage Growth Characteristics of 32-Ply Quasi-Isotropic Laminate Specimens Containing a Damaged Hole. 72°F (22°C), R=-1, Max Stress = 17 ksi (117 MPa)	22
15	Damage Growth Characteristics of 32-Ply Quasi-Isotropic Laminate Specimens Containing Impact Damage. 72°F (22°C), R =-1, Max Stress = 40 ksi (276 MPa)	23
16	Comparison of Baseline and TBE Exposed Specimen Fatigue Results, R =-1, 5 Hz	25
17	Three Inch Wide Specimen Configuration, Drawing TL 1038	29
18	Typical Master Panel Specimen Layout	32
19	Specimen Supported by Restraining Fix- tures Used in Static Compression and Fatigue Tests	53
20	Entique Duelding Cuide Design	55

Volume	II
--------	----

Figure No.		Page No
21	Four-Bar Buckling Support (Constraint #2) Design	56
22	Digital Mechanical Scanner with Vertical Mounting in Place for Panel Examination	58
23	Modified Holosonic System 400 with Digital Mechanical Scanner, Vertical Mounting System and Digital Memory	59
24	Typical Holscan Data Available for Each Damage Growth Interval	61
25	Typical Data Set Illustrating Single Pass B-Scan Results at Selected Locations Through the Damage	62
26	Illustration of the Damage Zone Size Parameters Evaluated	64
27	C-Scan Photos of Calibration Block	66
28	Typical Load vs. Deflection Curve for High Strain Rate Tests of 32-Ply Laminate	70
29	Typical Deflection vs. Number of Scans Curve for High Strain Rate Tests of 32-Ply Laminate	71
30	Stress-Strain Curve for Quasi-Isotropic Specimen NA-5 Derived from Strain Gage Measurements Yielding E = 7.5 x 10 psi (52 GPa)	76
31	Stress-Strain Curve for Quasi-Isotropic Specimen NA-5 Derived from Stroke Measurements Yielding E = 5.2 x 10 ⁶ psi (36 GPa)	77

Figure No.		Page No.
32	Typical Stress-Strain Curve Measured for the 24-Ply 67% 0° Laminate	79
33	Typical Stress-Strain Curve Measured for the 32-Ply Quasi-Isotropic Laminate	81
34	Typical Initial C-Scans of Damaged Holes in Compression and Tension Test Specimens of 24-Ply 67% 0 Laminate	83
35	Effect of Loading Rate and Pre-Loading on the Static Strength of 24-Ply Laminate Specimens Containing a Damaged Hole	86
36	Fracture Features Typical of Both Strain Rates for Damaged 24-Ply Specimens Tested in Tension	88
37	Typical Fractures of Damaged 24-Ply Specimens Tested in Compression with 4-Bar Buckling Supports at Standard Strain Rate	88
38	Typical Fractures of Damaged 24-Ply Specimens Tested in Compression with Fatigue Guides	89
39	Typical Initial C-Scans of Damaged Holes in Compression and Tension Test Specimens of 32-Ply Quasi-Isotropic Laminate	90
40	Effect of Loading Rate and Pre-Loading on the Static Strength of 32-Ply Laminate Specimens Containing a Damaged Hole	93
41	Fracture Features Typical of High and Low Strain Rate Tests for Damaged 32-Ply Specimens	95
42	Typical Fractures of Damaged Laminates Tested in Compression at 180°F (82°C)	102

Volume II		
Figure No.		Page No.
43	Typical Fractures of Damaged Laminates Tested in Tension at 180°F (82°)	103
##	Effect of Specimen Width and Loading Rate on the Tensile Strength of Undamaged, 32-Ply Laminate Specimens	106
45	Effect of Specimen Width and Loading Rate on the Tensile Strength of Undamaged, 24-Ply Laminate Specimens	107
46	Typical Fractures of Undamaged 24-Ply Laminate Specimens Tested in Tension at Room Temperature	109
47	Typical Fractures of Undamaged 32-Ply Laminate Specimens Tested in Tension at Room Temperature	110
48	Typical Fractures of Undamaged One-Inch (25 mm) Wide Q.C. Specimens Tested in Tension at Standard Strain Rate	111
49	Typical Fractures of Undamaged Specimens Tested in Compression at Room Temperature	113
50	Comparison of Two Parameter Weibull Curve Fit for Undamaged Task I and II 24-Ply Tension Data	114
51	Comparison of Two Parameter Weibull Curve Fit for Undamaged and Damaged Task II 24-Ply Tension Data	115
52	Comparison of Two Parameter Weibull Curve Fit for Damaged Task I and II	116

VAI	1700	11

Figure No.		Page No.
53	Comparison of Two Parameter Weibull Curve Fit for Damaged Task I and II 24-Ply Compression Data	117
54	Comparison of Two Parameter Weibull Curve Fit for Task I and Task II 32-Ply Tension Data	118
55	Comparison of Two Parameter Weibull Curve Fit for Task I and Task II 32-Ply Compression Data	119
56	Fatigue Scatter Results for 24-Ply Damaged Hole Specimens	125
57	Two Parameter Weibull Curve Fit for Task II 24-Ply Fatigue Data, = 35 ksi (241 MPa), R =-1	126
58	Three Parameter Weibull Curve Fit for Task II 24-Ply Fatigue Data, max = 35 ksi (241 MPa), R =-1	127
59	Fatigue Fracture Appearance of Damaged $24-Ply 67\% - 0^{\circ}$ Fiber Specimens Tested at 35 ksi (241 MPa), R =-1	129
60	Fatigue Scatter Results for 32-Ply Damaged Hole Specimens	130
61	Two Parameter Weibull Curve Fit for Task II, 32-Ply Fatigue Data, = 22 ksi (152 MPa), R =-1	131
62	Three Parameter Weibull Curve Fit for Task II, 32-Ply Fatigue Data, max = 22 ksi (152 MPa), R =-1	132
63	Fatigue Fracture Appearances of Damaged 32-Ply Quasi-Isotropic Specimens Tested at 22 ksi (152 MPa), R =-1	133

Volume II		
Figure No.		Page No.
64a	Area Damage Growth for the 24-Ply Fatigue Distribution Specimens (Specimens 1 - 10)	142
646	Area Damage Growth for the 24-Ply Fatigue Distribution Specimens (Specimens 11 - 20)	143
65a	Damage Growth in Width Dimension for the 24-Ply Fatigue Distribution Specimens (Specimens 1 - 10)	144
65b	Damage Growth in Width Dimension for the 24-Ply Fatigue Distribution Specimens (Specimens 11 - 20)	145
66a	Damage Growth in Height Dimension for the 24-Ply Fatigue Distribution Specimens (Specimens 1 - 10)	146
66b	Damage Gowth in Height Dimension for the 24-Ply Fatigue Distribution Specimens (Specimens 11 - 20)	147
67	Damage Growth Behavior of Typical Longer Lived 24-Ply Laminate Specimens	148
68	Damage Growth Behavior of Typical Shorter Lived 24-Ply Laminate Specimens	149
69	Damage Size at 30,000 Cycles vs. Life for the 24-Ply Laminate	151
70	Last Recorded Damage Size Prior to Failure vs. Remaining Life for the 24-Ply Laminate	152
71a	Typical Damage Growth Characteristics of Initially Damaged 24-Ply, 67% 0 Fiber	15.h

Volume II		
Figure No.		Page No.
716	Typical Damage Growth Characteristics of Initially Damaged 24-Ply, 67% 0° Fiber Specimens (Specimen EA-6, N _f = 166,600)	155
72	Damage Growth Characteristics of Initially Damaged 24-Ply Specimen HC-27 Which Exhibited Rapid Growth ($N_f = 27,800$)	156
73a	Area Damage Growth for the 32-Ply Fatigue Distribution Specimens (Specimens 1 - 10)	163
73b	Area Damage Growth for the 32-Ply Fatigue Distribution Specimens (Specimens 11 - 20)	164
74a	Damage Growth in the Width Direction for the 32-Ply Fatigue Distribution Specimens (Specimens 1 - 10)	165
746	Damage Growth in the Width Direction for the 32-Ply Fatigue Distribution Specimens (Specimens 11 - 20)	166
75a	Damage Growth in the Height Direction for the 32-Ply Fatigue Distribution Specimens (Specimens 1 - 10)	167
75b	Damage Growth in the Height Direction for the 32-Ply Fatigue Distribution Specimens (specimens 11 - 20)	168
76	Typical Damage Growth of 32-Ply Laminate Specimens	169
77	Damage Size at 20,000 Cycles vs. Life for the 32-Ply Laminate	171
78	Last Recorded Damage Size Prior to Failure vs. Remaining Life for the 32-Ply Laminate	172

Figure No.		Page No.
Volume II		
79a	Typical Damage Growth Characteristics of Initially Damaged 32-Ply Quasi-Isotropic Specimens (Specimen RB-14, N _f = 51,400)	173
79b	Typical Damage Growth Characteristics of Intitally Damaged 32-Ply Quasi-Isotropic specimens (Specimen RB-14, $N_{\rm f}$ = 51,400)	174
80a	Typical Damage Growth Characteristics of Intially Damaged 32-Ply Quasi-Isotropic Specimens (Specimen QA-5, $N_f = 234,200$)	175
80ъ	Typical Damage Growth Characteristics of Initially Damaged 32-Ply Quasi-Isotropic Specimens (Specimen QA-5, $N_f = 234,200$)	176
81	Relationship of Tension Residual Strength to Damage Area as Detected by the Holscan Ultrasonic C-Scan for 24-Ply Laminate Specimens	188
82	Relationship of Compression Residual Strength to Damage Area as Detected by the Holscan Ultrasonic C-Scan for 24-Ply Laminate Specimens	189
83	Typical Damage Characteristics of 24-Ply Specimens Fatigue Cycled at + 35 ksi (+241 MPa) for Residual Strength	
84	Determination Typical Fracture Appearances of 24-Ply Specimens Tested for Residual Strength	190
	After Fatigue Cycling	191

Figure No.		Page No.
Volume II		
85	Relationship of Tension Residual Strength to Damage Area as Detected by the olscan Ultrasonic C-Scan for 32-Ply Laminate Specimens	196
86	Relationship of Compression Residual Strength to Damage Area as Detected by the Holscan Ultrasonic C-Scan for 32-Ply Laminate Specimens	197
87a	Typical Damage Characteristics of 32-Ply Specimens Fatigue Cycled at + 22 ksi (+152 MPa) for Residual Strength Determination	198
87b	Typical Damage Characteristics of 32-Ply Specimens Fatigue Cycled at \pm 22 ksi (\pm 152 MPa) for Residual Strength Determination	199
88	Typical Fracture Appearances of 32-Ply Spēcimens Tested for Residual Strength After Fatigue Cycling	200
89	Column Buckling Results from Task I	204
90	Fatigue Life Data for 24 and 32-Ply Laminates for Variations in Constraint Condition, Range Ratio and Temperature Summarized in Table XXXV	206
91	Area Damage Growth Behavior for 24-Ply Specimens, Case A (4-Bar)	207
92	Area Damage Growth Behavior for 24-Ply Specimens, Case B (R =-0.3)	208
93	Area Damage Growth Behavior for 24-Ply Specimens, Case C (180°F)	209
94	Area Damage Growth Behavior for 32-Ply	210

Figure No.		Page No
Volume II		
95	Area Damage Growth Behavior for $32-Ply$ Specimens, Case B (R = -0.3)	211
96	Area Damage Growth Behavior for 32-Ply Specimens, Case C (180 ⁰ F)	212
97	Fracture Appearances of 24-Ply Specimens Tested in Fatigue with Constraint # 2, Case A	214
98	Fracture Appearances of 32-Ply Specimens Tested in Fatigue with Constraint #2, Case A	215
99	Fracture Appearances of 24-Ply Specimens Tested in Fatigue at 180°F (82°C), Case C	216
100	Fracture Appearances of 32-Ply Specimens Tested in Fatigue at 180°F (82°C), Case C	217
101 a	Damage Growth Characteristics of the 24-Ply Laminate for Fatigue Condition A, 4-Bar Support (Table XXXV) (Specimen BC-23, $N_f = 62,710$)	222
101b	Damage Growth Characteristics of the 24-Ply Laminate for Fatigue Conditon A, 4-Bar Support (Table XXXV) (Specimen BC-23, $N_f = 62,710$)	223
102 a	Damage Growth Characteristics of the 24-Ply Laminate for Fatigue Condition B, $R = -0.3$ (Table XXXV) (Specimen BC-24 completed 2 x 10^6 without failure)	224
102b	Damage Growth Characteristics of the 24-Ply Laminate for Fatigue Condition B, R =-0.3 Table XXXV) (specimen BC-24 completed 2 x 10 ⁶ without failure)	225

Figure No.		Page No.
Volume II		
103	Damage Growth Characteristics of the 24-Ply Laminate for Fatigue Condition C, 180°F (82°C) (Table XXXV) (Specimen AA-4,	
104 a	N_f = 2,060) Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition A, 4-Bar Support (Table XXXV) (specimen FA-8, N_f = 48,789)	226
104b	Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition A, 4-Bar Support (Table XXXV) (Specimen FA-8, $N_f \approx 48.789$)	228
105 a	Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition B, $R = -0.3$ (Table XXXV) (Specimen FC-30 completed 2 x 10^6 without failure)	229
105b	Damage Growth Characteristics of the 32-Ply laminate for Fatigue Condition B, $R = -0.3$ (Table XXXV) (Specimen FC-30 completed 2 x 10 without failure)	230
106 a	Damage Growth Characteristics of the $32-Ply$ Laminate for Fatigue Condition C, $180^{\circ}F$ ($82^{\circ}C$) (Table XXXV) (Specimen EB-15, $N_f = 50,198$)	231
106b	Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition C, 180° F (82° C) (Table XXXV) (Specimen EB-15, $N_f = 50,198$)	232
107	Typical Residual Tension Fracture Appearances for 24-Ply Laminate Specimens Tested Under Fatigue Condition A, B, or C of Table XXXV	233
108	Typical Residual Compression Fracture Appearances for 24-Ply Laminate Specimens Tested Under Fatigue Condition A, B, or C of Table XXXV	234

LIST OF ILLUSTRATIONS - continued

Figure No.		Page No.
Volume II		
109	Typical Residual Tension Fracture Appearances for 32-Ply Laminate Specimens Tested Under Fatigue Conditions A. B. or C of Table XXXV	235
110	Typical Residual Compression Fracture Appearances for 32-Ply Laminate Specimens Tested Under Fatigue Conditions A, B, or C of Table XXXV	236
111	Damage as Recorded by Holscan Indicating Locations at Which B-scans Were Obtained	239
112	Comparison of Damage as Determined by Metallographic Sectioning and Holscan Ultrasonic B-Scan at Location No. 1 (See Figure 111)	240
113	Comparison of Damage as Determined by Metallographic Sectioning and Holscan Ultrasonic B-scan at Location No. 2 (See Figure 111)	241
114	Comparison of Damage as Determined by Holscan Ultrasonic C-scan and DIB Penetrant Enhanced X-ray for Specimen JB-14	243
115	Comparison of Damage as Determined by Holscan Ultrasonic C-scan and DIB Penetrant Enhanced X-ray for Specimen KA-2	244
116	Comparison of Damage as Determined by Holscan Ultrasonic C-scan and DIB Penetrant Enhanced X-ray for Specimen SC-22	245
117a	Deplied 24-ply Specimen BB-15 After 40,000 Fatigue Cycles (Plies 1 - 13)	248
117b	Deplied 24-Ply Specimen BB-15 After 40,000	200

LIST OF ILLUSTRATIONS - continued

Figure No.		Page No.
Volume II		
117e	Deplied 24-Ply Specimens BB-15 After 40,000	
	Fatigue Cycles (Plies 20 - 24)	250
118a	Deplied 32-Ply Specimen SC-31 After 28,000	
	Fatigue Cycles (Plies 1 - 7)	251
118b	Deplied 32-Ply Specimen SC-31 After 28,000	
	Fatigue Cycles (Plies 8 - 19)	252
118c	Deplied 32-Ply Specimen SC-31 After 28,000	
	Fatigue Cycles (Plies 20 - 27)	253
118d	Deplied 32-Ply specimen SC-31 After 28,000	
	Fatigue Cycles (Plies 28 - 32)	254
119	Comparison of Damage as Determined by Holscan	
	Ultrasonic C-scan and DIB Penetrant Enhanced	
	X-ray for Specimen BB-15	255
120	Comparison of Damage as Determined by Holscan	
	Ultrasonic C-Scan and DIB Penetrant Enhanced	
	X-Ray for Specimen SC-31.	256

LIST OF TABLES

Volume	I	
TABLE		PAGE NO
I	Interlaminar Normal Stresses at Free Edges of Test Coupons	7
II	Scores of Flaws in Graphite/Epoxy in Response to Questionare 1	10
III	Proposed Task I Test Matrix	16
IV	Summary of Narmco Quality Control Tests for Rigidite 5208/T300	23
V	Summary of Lockheed Quality Control Tests for Narmco Rigidite 5203/T300 Material, Batch 1079(22)	24
VI	Summary of Panel Identification Codes	27
VII	Impact Parameters for 32 Ply Quasi-Isotropic Laminate	30
VIII	Impact Parameters for 24 Ply 67% 0° Fiber Laminate	31
ΣX	Preliminary Damaged Hole Drilling Parameters	50
x	Typical Randomization of Specimen Sequences	61
xI	Illustration of Randomization of Panels by Test	62
XII	Tension Test Results for 32 Fly Quasi-Isotropic T300/5208 Undamaged 1-Inch (24.4mm) Wide	72
IIIX	Tension Test Results for 24-Ply Quasi-Isotropic T300/5208 Undamaged 1-Inch (25.4mm) Wide	73
VIV	Tension Test Results for 24-Ply 67% 0° Fiber T300/5208, Containing Impact Damage	7 7
XV	Comparison of Strain Results from Extensometers Located Across the Impact Damage Site & Across Undamaged Material in 24-Ply 67% 0° Fiber T300/5208	79
IVX	24-Ply 67% 0° Fiber T300/5208 Damaged Hole Tension Test Results	86
XVII	Tension Test Results for 32-Ply Quasi-Isotropic Specimens Containing Impact Damage	91
XVIII	Comparison of Extensometer Results from the 32-Ply Quasi-Isotrop Material.	pic 97
XIX	32-Ply Quasi-Isotropic T300/5208 Damaged Hole Tension Test Result	lts 99
ХХ	2L-Ply Column Buckling Test Results	103
XXI	32-Ply Column Buckling Test Results	105
XXII	24-Ply Impact Damage Laminate Compression Test Results (with Fatigue Support)	108
XXIII	24-Ply Damaged Hole Compression Results (with Fatigue Support)	110
XXIV	Two Parameter Weibull Data Fit Parameters	113

LIST OF TABLES - Continued

Volume I

TABLE		PAGE NO.
XXX	32-Ply Impact Damaged Laminate Compression Test Results (with Fatigue Supports)	115
XXVI	32-Ply Damaged Hole Compression Results (with Fatigue Supports)	119
IIVXX	Summary of the Failure Stress Values for Various Test Conditions	124
IIIVXX	Summary of the Apparent Modulus Values for Various Test Conditions	125
XXIX	Fatigue Test Results for Damaged Hole Specimens of 24-Ply 67% 0° Fiber T300/5208 Laminate	130
XOX	Fatigue Test Results for Impact Damaged 24-Ply 67% 0° Fiber T300/5208 Laminate	131
XXI	Fatigue Test Results for Impact Damaged and Damaged Hole Specimens of 32-Fly Quasi-Isotropic T300/5208 Laminate	136
XXXII	Fatigue Test Results for Impact Damaged Specimens of 32-Ply Quasi-Isotropic T300/5208 Laminate	137
XXXIII	Static Compression Failure Stress Levels for Damaged Hole Specimens Which Had Been Previously Exposed to TBE	191
VIXXX	Fatigue History for TBE Exposed X-Ray Study Specimens, $R = -1$	192
XXXX	Task II Test Matrix	196

LIST OF TABLES

Volume I	Ι	
-----------------	---	--

Table No.		Page No
I	Illustration of Randomization of Panels by Test	34
II	Task II Test Matrix	35
III	Task III Test Matrix	37
IV	Properties of T300 Fibers Used in Tasks I, II and III	40
V	Summary of the Narmco Quality Control Tests for Rigidite 5208-T300 Certified Test Report No- 35952	41
VI	Summary of Lockheed Quality Control Tests for Narmco Rigidite 5208-T300 Material Batch #1295	42
VII	Panel Identification Codes	46
VIII	Resin, Fiber, and Void Analysis Results	48
IX	Static Test Matrix Summary	73
X	Comparison of Modulus and Failure Strain Values Derived from Extensometer and Cross-Head Displacement Measurements	74
XI	Comparison of Average Q.C. Tension Data for Tasks I, II and III	73
XII	Summary of Tension and Compression Results for Damaged 24-Ply Laminate	85
XIII	Summary of Tension and Compression Results for Damaged 32-Ply Laminate	92
VTV-	Took II Decidual Stwamph State Demon Counth	06

LIST OF TABLES - continued

Volume II

Table No.		Page No
XIVÞ	Task II Residual Strength Static Damage Growth	97
XVa	24 and 32-Ply Damaged Hole Static Damage Growth Results	98
ХVЪ	24 and 32-Ply Damaged Hole Static Damage Growth Results	99
XVI	Comparison of Elevated and Room Temperature Strength Data at Two Strain Rates	100
XVII	Tension Strength Data for Unnotched Specimens	104
IIIVX	Compression Strength Data for Unnotched Specimens	105
XIX	Comparison of Two Parameter Weibull Data Fit Parameters for Task I and Task II	120
XXa	Area Damage Growth (inches ²) for Damaged Hole 24-Ply Laminates Fatigue Cycled at + 35 ksi	136
ХХЬ	Area Damage Growth (mm 2) for Damaged Hole 24-Ply Laminates Fatigue Cycled at +241 MPa	137
XXIa	Damage Growth in X (Width) Direction (inches) For Damaged Hole 24-Ply Laminates Fatigue Cycled at \pm 35 ksi	138
XXIP	Damage Growth in X (Width) Direction (mm) For Damaged Hole 24-Ply Laminates Fatigue Cycled at + 241 MPa	139
XXIIa	Damage Growth in Y (Height) Direction (inches) For Damaged Hole 24-Ply Laminates Fatigue Cycled at + 35 ksi	140

LIST OF TABLES - continued

Volume II

Table No.		Page No.
XXIIP	Damage Growth in Y (Height) Direction (mm) For Damaged Hole 24-Ply Laminates Fatigue Cycled at + 241 MPa	141
XXIIIa	Area Damage Growth (inches ²) For Damaged Hole 32-Ply laminates Fatigue Cycled at + 22 ksi	157
XXIIIP	Area Damage Growth (mm ²) For Damaged Hole 32-Ply laminates Fatigue Cycled at + 152 MPa	158
XXIVa	Damage Growth in X (Width) Direction (inches) For Damaged Hole 32-Ply Laminates Fatigue Cycled at + 22 ksi	159
XXIVb	Damage Growth in X (Width) Direction (mm) For Damaged Hole 32-Ply Laminates Fatigue Cycled at + 152 MPa	160
XXVa	Damage Growth in Y (Height) Direction (inches) For Damaged Hole 32-Ply Laminates Fatigue Cycled at + 22 ksi	161
XXVb	Damage Growth in Y (Height) Direction (mm) for Damaged Hole 32-Ply Laminates Fatigue Cycled at 152 MPa	162
IVXX	Fatigue Results for Specimens Tested for Tension and Compression Residual Strength	180
XXVII	Baseline Fatigue Life Distribution by Machine	181
XXVIII	Failure Distribution by Test Machine for 24-Ply Laminate Specimens Fatigue Tested to N $_1$ - N $_5$ for Residual Strength Determination	184
XXIX	Tension Residual Strength Data Summary 24-Ply, 67% 0° Fiber Laminate	185

LIST OF TABLES - continued

Volume II

Table No.		Page No.
XXX	Compression Residual Strength Data Summary 24-Ply, 67% 0° Fiber Laminate	186
XXXI	Summary of Damage Measurements for 24-Ply Laminate Specimens	187
XXXII	Tension Residual Strength Data Summary 32-Ply Quasi-Isotropic Laminate	193
XXXIII	Compression Residual Strength Data Summary 32-Ply Quasi-Isotropic Laminate	194
XXXIV	Summary of Damage Measurements for 32-Ply Laminate Specimens	195
xxxv	Summary of Test Conditions for Variations in Fatigue Loading/Environment	202
XXXVI	Residual Strength Results	219
IIVXXX	Residual Strength Data Summary	221
XXXVIII	Comparison of Damage Lengths as Determined by Holscan and Metallography	242
XXXIX	Plies Containing Damage in Deplied 24 and 32-Ply Specimens	246

APPENDIX A

Quality Control Plan

QUALITY CONTROL PLAN

This Quality Control Plan has been prepared in compliance with the W. S. Air Force contract F33615-77-C-3084.

Manufacturing and quality assurance procedures will be applied to material and laminates, as described below, to ensure quality, uniformity and traceability of test specimens.

1. Material Acquisition

Narmco T300/5208 graphite/epoxy prepreg material conforming to Lockheed Material Specification C-22-1379/111 will be acquired for this program in three procurements. A new material batch will be obtained for each of Task I, II, and III. Other materials required for the fabrication of test laminates will be purchased to the requirements given in the Lockheed Engineering Purchasing Specification (EPS) Manual, to the extent indicated in Section 3. Fiberglass for the specimen tabs will be acquired to Lockheed Material Specification LCM C-22-1032/141.

2. Material Acceptance

The prepreg material supplier will be required to provide a certificate of conformance, including test data, resin/catalyst age, and date of mixing with each delivery. Lockheed Quality Assurance laboratories will then conduct acceptance tests on the delivered material in confirmation of supplier data. These tests will include:

• Uncured Properties

- Fiber orientation
- Resin content
- Volatiles content
- Resin flow
- Gel time
- Infrared Analysis
- Areal Weight

- Mechanical and Physical Properties of Cured Material
 - Void Content
 - Specific Gravity
 - Cured Resin Content or Fiber Volume
 - Interlaminar Shear
 - Longitudinal Tensile Strength and Modulus
 - Longitudinal Flexural Strength and Modulus
 - Cured Ply Thickness

The test methods and acceptance limits shall be as specified in the applicable material specifications, C-22-1379/111 and C-22-1379A. Materials not conforming to the requirements of the Specifications will be rejected.

Material specifications further stipulate preparation-for-delivery provisions covering date of shipment, allowable time and temperature in transit, and vapor-tight packaging required for supplier and transporter conformance.

Materials requiring refrigerated storage will be placed in Quality Assurance-approved refrigerators immediately upon receipt. Pending acceptance by the Quality Assurance laboratory, all materials will be kept segregated and withheld from use. After acceptance, each container, roll, or spool of material will be stamped or otherwise approved by Quality Assurance and controlling labels will be attached.

3. Material Processing

This section establishes the requirements and procedures for the lamination of graphite/epoxy (T300/5208) test panels, fabrication of glass/epoxy tab stock and bonding of tabs to coupons.

3.1 Applicable Documents and Materials

The following documents form a part of this procedure to the extent specified herein.

3.1.1 <u>Lockheed Materials Specifications</u>

Lockheed Material Specification, C-22-1379A Graphite Fiber Non-Woven Tape and Sheet, Resin Impregnated, General Specification for.

Lockheed Material Specification C-22-1379/111 Graphite Fiber Non-Woven Tape and Sheet, 350 ksi Strength, 33 MSI Modulus, 350°F Curing, Epoxy Preimpregnated.

Lockheed Material Specification LCM C-22-1032/141 Glass Fabric/Epoxy Preimpregnated, 350°F Cure.

3.1.2 Commercial Materials

3.1.2.1 The following commercial materials, covered by the Lockheed Engineering Purchasing Specification (EPS) Manual, form a part of this procedure to the extent specified herein.

<u>Material</u>	EPS Item No.
Vacuum Bag Nylon Film	22.9001
Parting Agent Film	22.9004
Porous Release Cloth	22.9030
Peel Ply	25.5910
Stick Contact Adhesive	30.0650

3.1.2.2 The following commercial materials not covered by the Engineering Purchasing Specification Manual are required for use in this procedure.

American Cyanamid Co.	FM-400 Epoxy Adhesive Film, 0.07 lbs/ft ² , 350°F Cure
Air Tech International Inc.	Flashbreaker 5 Pressure Sensitive Tape

3.2 <u>Material Control</u>

All materials shall conform to the applicable specifications.

3.2.1 Storage and control requirements shall be as specified in Table A1. Refrigerated material shall be stored in sealed, moisture vapor proof containers.

- 3.2.2 Refrigerated materials shall be thawed until moisture no longer condenses on the moisture-proof containers.
- 3.2.3 All perishable materials shall have had validation tests performed within 30 days of use, if initial storage time limit has been exceeded. Validation tests are the same as those shown in Table A1.
- 3.2.4 A manufacturer's identified defects (MID's)record is furnished with each roll of Gr/Ep by the material supplier. This record shall be furnished to the Composites Laboratory with each roll of Gr/Ep.
- 3.2.5 Stored perishable material in which visible water is observed in the bag shall be rejected.

TABLE A1 - MATERIAL CONTROL

<u>Material</u>	Max. Storage Temp.		Storage Time etesting, Day Subsequent	Minimum Required Tests	Max.Allowed Out Time During Proc. @75°F & 55% R.H.
Gr/ep Prepreg	0°F	180	60		14 days
Adhesive Film	0°F	180	90	Climbing Drum Peel @ -65°F	10 days

flow and gel time, room temp. flexural and short beam shear, specific gravity and resin content.

See applicable Material Specifications for test methods and requirements.

3.3 <u>Environmental Control</u>

- 3.3.1 All work shall be done in controlled areas to avoid degradation of the materials and laminates. Temperature shall be between 65-80°F and relative humidity shall not exceed 55%.
- 3.3.2 All incoming air into controlled areas shall be filtered by at least a $l\frac{1}{2}$ -inch thick throw-away type or permanent washable type filter or by an equivalent method. Inspect and clean filters monthly.

3.4 Tooling

- 3.4.1 All tools shall be designed and coordinated to produce parts that meet all requirements of this specification and the Engineering drawing. Tools shall have the minimum mass necessary for dimensional and thermal control.
- 3.4.2 All tool plates used for curing laminates shall be aluminum. Thickness of the caul plate shall be 0.500 in. with a tolerance of \pm 0.003 in., flat and parallel. Caul plates used on top surface of laminate under the vacuum bag shall be aluminum sheet 0.064 in. standard thickness.
- 3.4.3 Tooling parting agents and cleaners shall not contaminate the laminates or interfere with subsequent bonding, finishing and inspection.

3.5 Material Preparation

- 3.5.1 Templates or patterns shall be placed on the prepreg in such a way as to ensure that the fiber direction is in accordance with Engineering drawing requirements and does not include any MID's flagged by the supplier (see 3.2.4)
- 3.5.2 Panels will be laid-up such that the edges of tape are parallel or perpendicular to the required fiber direction within 1°.

- 3.5.3 All areas from which material will be cut shall be checked prior to cutting for the defects defined in C-22-1379, Quality and Condition Requirements, which may not have been flagged by the manufacturer. Material containing unacceptable defects will not be used. Patch plies are not permitted.
- 3.5.4 Plies shall be cut with sufficient care so as not to disorient fibers. Cutting tools shall be cleaned prior to use on prepregs.
- 3.5.5 No ply end butt splices are permitted in the laminate assembly.

3.6 Tool Preparation

3.6.1 The tool molding surfaces shall be solvent wiped and all resin removed prior to layup.

3.7 Panel Lay-up

- 3.7.1 The preimpregnated graphite tape shall be placed on the tool in the sequence and orientation specified on the Engineering drawing or Engineering Test Request. As each ply is placed on the assembly, it shall be checked for the defects defined in C-22-1379 prior to applying the ply firmly in place. A check-off system shall be used to assure proper orientation and stacking sequence of each ply.
- 3.7.2 The surface of each ply shall be wiped with a teflon, polyethylene or equivalent device to give maximum adhes: o the previous ply. Wiping shall be done only in the direction of the fibers to prevent fiber separation and distortion. Wiping the surface should be done only when the orientation of the tape edge has been verified to be within $\pm 1^{\circ}$ of the drawing requirement. Excessive pressure shall not be applied during wiping and wiping shall be kept to a minimum.
- 3.7.3 Parallel plies shall be laid up so that edge splices are staggered a minimum of 1.0-inch in adjacent plies and not coincide within a 5 ply thickness.

- 3.7.4 Edge splices shall be butted flush, ± 0.03 inch.
- 3.7.5 Entrapped air in blisters that cannot be wiped out without distorting fibers shall be removed by puncturing the blister with a needle or pointed sharp blade as often as needed and wiping in the direction of the fibers toward the puncture. Care shall be taken not to damage the under ply fibers.
- 3.7.6 Where permanent edge steps or dams are not incorporated in the tool for edge thickness control, an edge dam shall be built around the perimeter of the laminate. The dam shall not be more than 0.06-inch from the laminate edge and shall be of sufficient height to enclose the laminate. The bleeder may not extend over the dam surface. Joints in the dam shall be kept to a minimum. Dam joint gaps shall not exceed 0.03-inch.
- 3.7.7 A dry peel ply of fabric (EPS 25.5910) or equivalent shall be placed on both sides of the layup and wiped smooth.
- 3.7.8 A bleeding and bagging system of the following construction shall be used.
 - (a) Cure plate
 - (b) Separator film perforated parting agent film or porous release cloth.
 - (c) Mochburg CW1850 bleeder paper (1 ply for 4 plies of prepreg.)
 - (d) One ply of porous Teflon-coated glass cloth (DuPont Armalon)
 - (e) Nylon peel ply
 - (f) Graphite/epoxy laminate
 - (g) Nylon peel ply
 - (h) One ply Armalon
 - (i) Mochburg CW1850 bleeder paper (4:1 ratio)
 - (j) Release film
 - (k) Caul plate (aluminum)

- (1) One ply Mochburg CW1850
- (m) Release film
- (n) Glass breather
- (o) Nylon film vacuum bag placed over the laminate and sealed to the tool face.
- 3.7.9 <u>Curing</u> Pressure and cure cycle should be within the limits given in Table A2.

TABLE A2 - CURE CYCLE

- 1. Apply full vacuum
- 2. Heat to 275° ± 5°F @ 2-3°F/min.
- *3. Dwell @275° + 5°F for 30 + 1 minutes
- 4. Apply 100 + 5 psi vent vacuum to air @20 psi.
- 5. Heat to 355 ±5 °F @2-3°F/min.
- 6. Cure for 120 ± 10 min. @ 355 ± 5°F.
- 7. Cool to 140 + 5°F under pressure @less than 4°F/min.
- 8. Cool to room temperature.
 - * NOTE: Dwell time started when temperature reaches 265°F.

3.8 Laminate Control Specimens

Each panel will be laid up to contain an excess strip at least one inch wide and running either the length or width of the panel. The strip must be located at least one inch from the panel edges.

- 3.8.1 Laminate control coupons will be cut from this strip for the determination of resin content, specific gravity and average ply thickness. Test requirements are given in Table A3.
- 3.8.1.1 Void volume fraction will also be measured on laminate control coupons from selected panels using standard metallographic techniques. This method will be used to confirm results calculated from the acid digestion and density measurement values.

TABLE A3 - TEST REQUIREMENTS

Test	Requirements
Fiber Volume	65 ± 2%
Specific Gravity	1.56 - 1.60
Thickness/Ply	.00460053 inch (Report for information only)

3.9 Workmanship

All laminated details and bonded assemblies shall be of highest quality. Conditions in excess of the following shall be cause for rejection.

- 3.9.1 There shall be no evidence of surface cracking, uncoated fibers, excess resin, pits, tackiness or other indications of defective resin characteristics or distribution.
- 3.9.2 No visual delaminations are allowed.
- 3.9.3 The laminate shall be essentially void free. Calculated voids shall not exceed 1.0 volume percent without special engineering review.
- 3.9.4 brankles
- 3.9.4.1 No wrinkles containing graphite fibers are permitted. Resin wrinkles caused by peel ply gathering or by the bleeder system shall not be cause for rejection if the resin ridge can be removed without damaging the graphite fibers using 320 grit or finer sandpaper.
- 3.9.5 The presence of foreign material, e.g., separator film, masking tape, etc., in the part is not acceptable.
- 3.9.6 There shall be no sharp or frayed edges, nor edge delaminations resulting from trimming and routing operations.

3.10 Cleanup

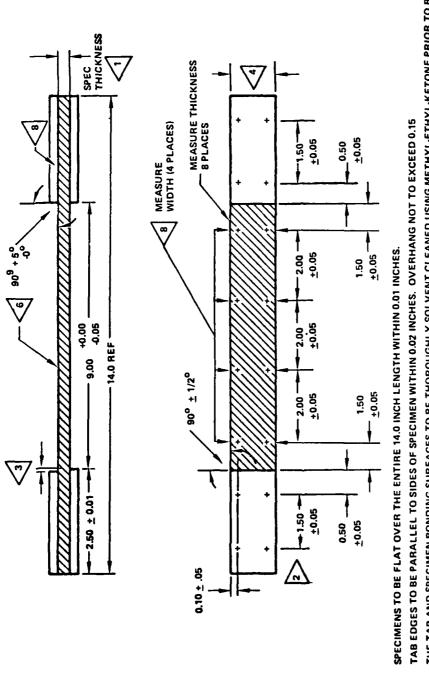
Chemical strippers shall not be used in any way to remove excess resin or adhesive. If removal is necessary, it shall be done with an abrasive, and shall not damage any surface graphite fibers.

3.11 Records

The following records are required for permanent retention and traceshility.

- 1. Temperature-pressure-vent-time profile record for each cure cycle.
- 2. Thermocouple locations.
- Material batch and roll number, acceptance laboratory report number and cumulative out-time up to the time of vacuum application.
- 4. A completed autoclave record sheet as shown in Figure Al.

3.12 Machining of Test Specimens


Specimens are to be machined using aluminum backup sheets to the dimension shown in Figure A2, Drawing TL 1038. Specimen cuts will be made parallel to the panel edge to \pm 1 degree. Cutting rates will be chosen to minimize edge damage. Specimen dimensional tolerances and inspection requirements are given in the Task I Test Plan. All specimen shall be weighed and the weight recorded on the specimen checklist form following fabrication.

3.13 Fabrication and Bonding of Glass Fabric/Epoxy Grip Tabs

3.13.1 Grip tab sheet material shall be fabricated by laminating the required number of plies of Style 181, 1581, or 7581 glass fabric/epoxy prepreg. For most standard coupons, the laminate consists of 6 plies or 3 plies in thickness depending on the type of coupon. Thicknesses and other dimensions shall be in accordance with Lockheed Drawing No. TL 1038. Tab dimensions shall be as specified on specimen drawing.

]	Figure Al	: Sample	e Aut	coclave	e Record		Run #
Q.A.	Lab.	Report #_		Made	for			_ Date _	
I.	Descr	iption of 1	Materials						Data
				Ba	t c h#_		Roll#_		Date Mfd
	No. o	f Plies	- 0	- rientati	on				_ : - <u>_</u>
	.,,,,						CURE CYC	LE (NARM	co)
II.	Cure	rress.		81	1 -	ADDIV	luel va	ac uum	
	Cure ?	Temp	^o F		2. *2	Heat	to 2750	I 5°F @	2-3 ^o F/min. 30 [±] 1 min. nt vac to air @
		Time	m	in.	^3•	Dwell	100+5	nei kwa	30±1 min. nt vac to air @
	Vac.	Bag	in	cn-Hg					
III.		lave Press			5. 6.	Heat Cure	to 355 1 120 1 10	5°F @ 2	-3°F/min. 355 ± 5°F
	Time	@ start			7.	Cool	to 140 <u>†</u>	50F und	er press. @<4 ⁰ F/min
	Delta	@ press Time min.			8.	Cool	to R.T.		·
IV.		0			*	NOTE:	dwell t	ime star 265°F.	ts when temp
v.	Temp	o _]	F @ lay-u	p	v.				lav-up
At Tin Tin Hea	ne @ te at~up :	temp min emp min. rate ^O F/min.	•		Time	Temp	Time T	4 Temp Time	5 Temp Time OFF
Coc	ol-dow	n rate ^O F/m	in			<u> </u>			
VI.	Panel	ls					VIII. E	Bleeding a	& Bagging
IX.			(in.)		Me: Th:			vac Moch caul vac Moch arma nylo	glass breather pac purg (1 ply) plate pac burg (4:1 ratio) lon n peel ply
Sign	nature ——	of Inspec	ting Engi	neer				arma Mochi vac	lon ourg
				A 1 2		NOTE:	Laminat		tely dammed

perforated vac pac taped to dam.

THE TAB AND SPECIMEN BONDING SURFACES TO BE THOROUGHLY SOLVENT CLEANED USING METHYL-ETHYL-KETONE PRIOR TO BONDING. A 350°F CURING ADHESIVE IS TO BE USED AND MUST COVER ENTIRE SURFACE UNIFORMLY' WATER SPRAY MIST TO BE USED DURING SAWING OPERATIONS AND SOLUBLE OIL DURING GRINDING. MACHINED SURFACES TO BE RMS 50 OR MEASURE SPECIMEN WIDTH 4 PLACES. WIDTH MUST NOT VARY BY MORE THAN 0.004 INCHES. BETTER. NO EDGE DAMAGE OR FIBER SEPARATION SHOULD BE VISIBLE

TABS TO BE CUT FROM AN 6 PLY LAMINATE FABRICATED FROM PREPREG OF 1581 GLASS FABRIC IN A 350°F CURING EPOXY. TAB PLUS ADHESIVE THICKNESS MUST NOT VARY SIDE TO SIDE OR END TO END BY MORE THAN 0.01 INCH AS MEASURED 8 PLACES. MISMATCH OF TABS FROM SIDE TO SIDE NOT TO EXCEED 0.01 INCHES.

SPECIMEN WIDTH TO BE 3.00 +0.00 INCHES.

SPECIMEN THICKNESS TO BE WITHIN ± 0.003 Inches of the average of B Thickness measurements.

- 3.13.2 The material used for grip tab stock shall be glass/epoxy prepreg conforming to Lockheed Material Spec. LCM C-22-1032/141. This material shall be cured at 350°F for one hour under a pressure of 35 psi plus vacuum. A caul sheet shall be used under a vacuum bag for pressure application.
- 3.13.3 The adhesive used for bonding tabs to coupons shall be American Cyanamid Co. FM-400, 0.07 lbs/ft². Aluminum caul plates $\frac{1}{4}$ to $\frac{1}{2}$ -inch thick shall be used to apply bonding pressure on tabs. Cure adhesive at 350°F $\frac{1}{2}$ 5°F for 60 to 70 minutes using 15 $\frac{1}{2}$ 1 psi positive pressure on bondline (no vacuum). Cool to 170°F under pressure.

4. QUALITY ASSURANCE PROVISIONS

To produce test panels of consistent quality, strict adherence to all the minimum Engineering requirements of Section 3 is vital. The requirements of Section 4 are intended to outline the minimum amount of inspection and surveillance before, during, and after processing testing to confirm that adherence has been achieved.

4.1 Material

Verification shall be made that only adhesives and prepreg materials are used that are approved to the material specifications specified.

- 4.1.1 Adhesive or prepreg material which is stored below room temperature shall be wrapped in a closed impermeable bag at all times. Evidence of material cracking or moisture condensation on the material is cause for rejection. Exposure to ambient temperature shall be minimized.
- 4.1.1.1 Adhesive or prepreg material which is withdrawn from storage and left out 30 minutes or more before returning to the box, shall have the out-time marked on an appropriate tag attached to the roll. Material for which accumulated out-time at ambient temperature exceeds the allowable out-time given in Table Al, shall not be used.

- 4.1.2 All adhesive and prepreg materials shall be controlled as to batch, lot, and roll numbers for traceability.
- 4.1.2.1 Material which has exceeded the allowable storage shall not be used unless tested within one week prior to use.
- 4.1.2.2 All refrigerated materials shall be checked for compliance to 3.2.2 prior to use.
- Panels and coupons shall be clearly marked before and after application of tabs to indicate the bag side of the graphite/epoxy laminate as originally cured. Panels shall be identified with a number including material code and autoclave run number. Coupons shall be identified with panel number from which cut and a dash number indicating location.

Example: 1LY 556-1A

Coupons shall be numbered consecutively as they are cut from panels to indicate relative location in the panel.

4.3 Equipment and Facilities Control

Equipment and facilities used for materials storage, processing, and inspection shall be controlled in accordance with ICP79-1053.

- 4.4 An effective quality control system shall be provided to ensure compliance with the requirements of this procedure as specified in the following sections.
- 4.4.1 Material Acceptance testing will be performed by Lockheed Quality Assurance Laboratories.
- 4.4.2 Panel and tab fabricating and tab bonding will be accomplished by personnel of the Composites Laboratory at Rye Canyon Research Laboratories. Layup and cure of each panel will be witnessed and inspected by Engineering.

- 4.4.3 Specimens will be machined to required dimensional tolerances by machinists at the Rye Canyon Shops. Dimensional inspection of specimens will be the responsibility of Lockheed Quality Assurance.
- 4.4.4 The principal investigator will have final acceptance/rejection authority for material, panels and specimens.
- 4.4.5 An engineering approved autoclave record will be maintained for each panel.
- 4.4.6 A Quality Assurance specimen checklist such as shown in Figure A3 shall be completed for each specimen verifying its conformance with the requirements of the Quality Assurance Plan and Test Plans.

4.5 <u>Non-Destructive Inspection</u>

- 4.5.1 All test panels shall be non-destructively inspected for internal defects by ultrasonic "C" Scan procedure. Standard reference 2 mil thick teflon pads of 1/8-inch to 1/4-inch diameter will be placed at one corner of each panel. A permanent record of the C-Scan results shall be retained with the records required in 3.11.
- 4.5.1.1 Specimens will not be cut from areas in the panels which show indications comparable to the standards.
- 4.5.2 Location and size of holes and intentionally induced defects will be measured by Engineering based on Holosonics Series 400 Holoscan results.

Figure A3. Sample Specimen Checklist

				Date:	
Specim	en No.		Laminate Type		
			Required Orientation		
Acc.	Rej.	<u>Measured</u>	Req'd_	<u>Date</u>	Spec. Wt.
		1. % Fiber Vol	65 ÷ 2%		
		2. % Resin Vol.	35 ± 2%		
		3. % Void Cont.			
		a. by density			
[]		b. by metallography	< 1%		
		Specimen Thickness:			
		Avg. Thk. Max.	Deviation	Req'd Dev.	±0.003
		Specimen Width			
		Avg. Width Max.	Deviation	Req'd Avg:	300 ± 0.00
					± 0.002
		Tab Mismatch	Req'd: less	than 0.01 in	
		Tab parallelism_	Req'd: with	in 0.02 inche	es
		Tab overhang	Req'd: less	than 0.15 in	nches
		Edge damage or fiber separa	tica		
	ليا				
	C.	m. Specimen weight followin	a fehricetion		
		_	E rapirodorom		
		Date weight measured.			

APPENDIX I

Specimen Weight Measurements

TABLE B1
WEIGHT MEASUREMENTS^a FOR
FATIGUE LIFE DISTRIBUTION SPECIMENS - TASK II

	24-PLY			32-PLY	
Spec. ID	Initial Weight, gms.	Pre-Test Weight, gms.	Spec. ID	Initial Weight, gms.	Pre-Test Weight Gms.
HC-26 IB-13 CC-25 DA-6 AC-30 BC-29 FA-3 AA-2 EA-6 HC-27 IC-25 CA-1 BB-17 DC-30 GC-27 EB-16 AB-15 IB-19 DC-28	187.2 191.2 190.4 190.2 191.4 192.4 191.7 191.1 189.4 188.3 190.0 191.9 191.1 190.6 183.3 191.9 191.5 191.7	186.8 190.5 - 189.8 - 191.8 192.5 191.1 189.7 188.3 189.5 192.0 191.2 190.6 183.4 190.5 192.9	MB-17 QA-8 LC-30 JC-24 SA-6 PA-5 SC-30 KC-23 NA-3 MC-27 RA-8 QC-29 LC-24 PB-19 JA-1 SC-24 JA-6 PC-23 LA-6	231.9 234.1 230.7 229.9 230.1 231.8 228.9 233.1 235.4 232.4 232.8 234.1 231.3 231.3 231.3 231.5 229.4 228.6 235.5 231.5	232.5 233.1 232.0 231.1 230.0 230.3 231.3 231.1 231.9 231.2 231.6 233.2 230.6 233.5 233.5 233.2 229.2 234.5 231.2
FC-23	192.3	103.1	RB-14	228.6	232.3

a = Listed in order tested.

TABLE B2
WEIGHT MEASUREMENTS^a FOR SPECIMENS TESTED FOR RESIDUAL STRENGTH AFTER FATIGUE CYCLING TO N TASK II

24-PLY N₅ = 40,000 CYCLES

32-PLY N₅ = 28,000 CYCLES

Spec. ID	Initial Weight, gms.	Pre-Test Weight, gms.	Spec. ID	Initial Weight, gms.	Pre-Test Weight Gms.
GA-9	187.6	188.8	KA-5	233.3	233.3
BC-25	189.4	190.9	PB-13	234.6	232.0
HB-3	188.7	b	RA-5	231.8	231.6
CB-19	192.3	192.5	JC-23	230.7	231.5
DC-26	190.7	b	MA-4	230.8	232.4
GA-3	189.9	b	PB-12	232.6	233.2
FC-27	194.5	193.2	NB-14	230.8	234.3
HC-30	188.8	187.6	QC-31	233.3	232.7
BC-26	189.9	b	SB-18	233.1	232.3
EB-15	190.2	ъ	KB-14	231.4	232.1
CA-3	190.8	b	LC-26	232.2	233.2
CC-27	190.0	190.6	PA-7	232.6	232.8
AA-8	187.6	b	SB-17	231.4	230.5
DB-13	191.2	b	JB-18	233.2	233.8
IB-16	193.2	191.8	RC-25	231.9	232.1
CC-24	190.6	192.0	LB-19	233.4	232.3
AC-26	193.2	193.7	NB-18	233.5	234.5
FA-7	194.8	ď	RC-31	231.2	232.2
GA-1	183.4	b	MB-15	234.6	233.6
En-9	188.3	189.5	KB-17	230.9	232.0
GB-15	191.1	191.1			

a = Listed in order tested
b = Failed in fatigue

TABLE B3

WEIGHT MEASUREMENTS FOR
SPECIMENS TESTED FOR RESIDUAL STRENGTH AFTER FATIGUE CYCLING TO N4 TASK II

 $24-PLY N_{ij} = 20,000 CYCLES$ 32-PLY $N_{ij} = 20,000 CYCLES$

Spec. ID	Initial Weight, gms.	Pre-Test Weight, gms.	Spec. ID	Initial Weight, gms.	Pre-Test Weight Gms.
BC-28	192.1	b	NB-17	232.5	233.5
HC-29	187.4	b	JB-15	231.4	233.1
AC-25	191.6	185.3	QC-30	230.1	232.2
HB-12	189.7	b	LA-5	232.4	232.0
GC-24	190.6	188.9	MB-18	229.5	231.8
BA-8	189.1	b	SC-23	232.1	231.0
FB-15	193.4	190.9	RC-24	230.3	230.9
EC-26	190.7	b	LA-4	231.4	230.0
IB-14	190.2	b	MB-13	231.8	232.8
CB-17	191.8	191.0	KB-12	232.0	231.3
CA-9	187.5	b	NA-6	232.4	233.4
GC-25	198.2	198.4	RC-22	229.7	231.3
AA-3	191.5	192.8	PB-17	234.4	233.2
BB-14	192.2	192.7	SA-9	234.3	Ъ
DB-14	192.4	190.3	JB-11	234.5	234.7
FA-2	190.4	191.6	QC-22	232.5	232.0
FC-29	190.6	191.7	SC-27	230.2	230.4
EB-17	188.8	b	LC-31	233.2	230.0
AB-17	188.7	Ъ	MB-11	229.1	230.0
CA-4	194.4	Ъ	QB-13	233.4	232.7
BC-22	190.8	b	RA-7	231.5	231.7

a = Listed in order tested

b = Failed in fatigue

TABLE B4 WEIGHT MEASUREMENTS FOR SPECIMENS TESTED FOR RESIDUAL STRENGTH AFTER FATIGUE CYCLING TO N $_3$ TASK 14

 $24-PLY N_3 = 12,000 CYCLES$

 $32-PLY N_3 = 10,000 CYCLES$

	3	,						
Spec. ID	Initial Weight, gms.	Pre-Test Weight, gms.	Spec. ID	Initial Weight, gms.	Pre-Test Weight Gms.			
DB-15	188.9	189.7	SA-5	230.9	231.9			
AC-27	191.5	192.3	PA-4	235.3	234.8			
DA-10	185.4	187.6	LA-7	231.2	231.8			
BC-21	192.0	191.3	PA-1	230.5	233.1			
FB-18	188.6	b	NB-16	231.4	235.6			
CA-6	187.7	b	KA-7	235.1	232.9			
IA-S	189.6	189.8	MC-29	231.0	231.5			
EA-4	191.1	b	QB-12	231.8	231.6			
GB-18	190.4	189.3	RB-12	231.2	231.7			
HB-9	190.7	b	LC-27	231.6	234.5			
DA-2	190.5	ъ	SA-3	232.3	231.7			
AA-5	192.0	192.8	JC-28	233.1	233.2			
CB-14	189.9	189.9	NB-13	231.8	233.4			
HC-21	189.1	188.6	KC-22	230.2	233.4			
GA-5	189.9	189.6	MC-25	232.0	232,5			
IA-6	190.9	190.0	LC-23	229.7	233.6			
FA-1	189.6	190.1	SB-11	230.4	230.6			
BB-19	191.6	191.3	QC-23	231.8	234.4			
IA-8	190.9	190.5	JC-27	233.6	235.5			
CA-2	189.7	192.4	PC-27	232.3	234.5			
HA-6	187.8	188.0		•				

a = Listed in order tested

b = Failed in fatigue

TABLE B5 WEIGHT MEASUREMENTS $^{\rm a}$ For SPECIMENS TESTED FOR RESIDUAL STRENGTH AFTER FATIGUE CYCLING TO N $_2$ T'SK II

 $24-PLY N_2 = 8,000 CYCLES$ $32-PLY N_2 = 5,000 CYCLES$

Spec. ID	Initial Weight, gms.	Pre-Test Weight, gms.	Spec. ID	Initial Weight, gms.	Pre-Test Weight Gms.
FC-26	193.3	193.2	MB 16	231.6	232.9
DC-29	189.5	190.6	NC-26	234.6	234.0
AA-9	189.9	b	KC-28	232.5	232.1
BC-30	191.5	191.6	QA-1	230.8	231.8
GC-22	187.8	186.9	JA-4	231.3	233.2
AA-7	192.6	192.2	QA-9	232.7	234.2
IB-15	190.7	190.9	SB-13	230.0	232.1
FB-11	192.0	191.8	NC-22	230.2	233.5
CB-16	192.1	191.2	KB-16	232.9	233.7
EC-24	188.3	188.8	LA-2	229.2	233.2
BB-12	192.1	b	PB15	233.6	230.8
DA-5	190.9	189.9	RB-20	228.7	229.6
GA-6	189.7	189.4	MA-6	232.4	231.6
HB-16	191.2	190.3	RC-27	229.1	232.9
DB-18	188.8	188.7	JA-5	235.4	234.5
HB-15	192.1	b	LB-16	231.3	235.1
BA-6	190.4	b	KC-24	228.8	230.2
CB-12	189.2	189.8	PC-25	230.2	232.1
AC-24	191.3	192.8	NA-2	233.1	233.0
EA-5	188.3	188.7	QC-28	232.2	233.1
EC-29	188.1	188.0	-	-	
IC-27	188.8	190.4			

a = Listed in order tested

b = Failed in fatigue

TABLE B6 WEIGHT MEASUREMENTS FOR SPECIMENS TESTED FOR RESIDUAL STRENGTH AFTER FATIGUE CYCLING TO N $_{1}$

24-PLY N₁ = 4,000 CYCLES

 $32-PLY N_1 = 1,000 CYCLES$

Spec.	Initial	Pre-Test	Spec.	Initial	Pre-Test
ID	Weight, gms.	Weight, gms.	ID	Weight, gms.	Weight Gms.
EA-7	187.1	189.2	LA-9	229.8	231.1
HC-24	188.6	190.2	QA-6	232.8	234.0
CC-23	190.3	191.9	NA-4	233.7	234.1
GB-16	190.2	191.6	SB-19	229.1	231.5
FC-25	193.8	194.5	MA-8	230.7	232.1
BA-9	187.8	189.5	KC-27	230.2	232.1
DA-3	191.2	192.4	JB-13	232.6	234.1
AB-13	188.3	191.3	PA-3	232.4	232.9
IA-1	190.1	189.7	MC-28	232.6	230.8
EC-27	189.5	190.1	SA-7	230.1	232.4
FC-24	191.8	193.6	PA-9	232.8	232.3
GA-4	187.8	190.5	QB-17	231.4	231.7
BA-1	186.8	188.9	NC-30	232.7	233.6
EC-25	190.6	191.9	RA-2	233.9	232.4
DC-22	186.4	189.7	RA-9	233.9	232.7
AC-29	192.1	193.4	JC-22	230.8	231.3
HA-7	188.6	190.3	LA-3	230.1	234.4
AB-14	191.4	193.4	NC-28	230.5	232.4
HA-2	189.1	190.2	JB-16	232.6	233.4
FB-19	190.2	191.4	KB-18	232.4	233.7

a = Listed in order tested

TABLE B7 WEIGHT MEASUREMENTS^a FOR FATIGUE LIFE DISTRIBUTION SPECIMENS - TASK III

	24-PLY N ₄ = 20,000	CYCLES	32-	-PLY N ₄ = 20,000	CYCLES
Spec. ID		Pre-Test Weight, gms.	Spec. ID	Initial Weight, gms.	
	FA	TIGUE CONDITION A	A - 4 BAR	SUPPORT	
AA-8 BC-23 CA-6		192.6 193.2 197.7	DC-27 EB-18 FA-3 FA-8	238.0 236.2 232.7 232.3	230.5
		FATIGUE CONDITIO	ON B - R =	-0.3	
BC-24 CC-27 AB-11	190.7	194.6 191.6 190.6	FC-30 EA-8 DC-31	232.3 235.0 237.7	232.4 _ 238.0
	F	ATIGUE CONDITION	C - 180°F	(82°C)	
BB-12 CA-4 AA-4		193.4 199.6 192.2	FB-19 DC-28 EB-15	233.0 234.6 236.1	233.6

TABLE B8
WEIGHT MEASUREMENTS FOR SPECIMENS TESTED FOR
RESIDUAL STRENGTH AFTER FATIGUE CYCLING UNDER CONDITION A b
TASK III

	24-PLY			32-PLY	
Spec. ID	Initial Weight, gms.	Pre-Test Weight, gms.	Spec. ID		Pre-Test Weight Gms.
	N ₁ = 4,000 CY	CLES		N ₁ = 1,000 C	YCLES
BA-7 AB-14 CA-9 CA-2 AC-26 BC-27	191.9 190.4 189.5 190.4 190.6 196.7	191.8 192.2 191.1 191.0 191.6 198.0	DB-13 EA-1 FC-28 FC-23 EC-22 DC-26	235.7 239.4 236.6 233.3 235.8 239.2	
	N ₂ = 8,000 CYCI	.ES		N ₂ = 10,000	CYCLES
CC-29 BA-4 AB-16 CA-10 CA-7 AB-19	190.8 191.0 192.1 191.9 192.4 191.5	192.5 190.6 192.2 191.1 191.0	SC-23 FB-14 EB-17 FA-10 EA-7 DB-18	237.4 231.5 237.1 233.7 237.0 235.6	231.4
	N ₃ = 12,000 CYC	CLES		$N_3 = 20,000$	CYCLES
BB-11 CC-21 AA-7 AC-31 CC-26 BB-13	192.6 191.0 193.6 195.8 190.8 196.5	192.6 191.5 190.7 197.4 190.2 196.5	DB-11 FA-1 EB-20 DA-3 EC-23 FA-2	237.5 238.0 237.5 235.7 236.0 232.4	236.8 237.1 236.2 236.6 233.7 231.1

a = Listed in order tested
b = See Table XXXV, Volume II

TABLE B9
WEIGHT MEASUREMENTS FOR SPECIMENS TESTED FOR
RESIDUAL STRENGTH AFTER FATIGUE CYCLING UNDER CONDITION B
TASK III

	24-PLY			32-PLY		
Spec. ID	Initial Weight, gms.	Pre-Test Weight, gms.	Spec. ID	Initial Weight, gms.	Pre-Test Weight Gms.	
	N ₁ = 4,000 CY	CLES		N ₁ = 20,000 CY	CLES	
BC-25 AB-12 CC-28 AC-25 BC-22 CB-16	193.2 190.5 190.5 190.5 193.2 190.6	193.3 191.2 189.8 190.9 193.5 190.7	EA-6 ec-27 DA-5 DA-3 EC-23 FA-2	235.9 238.5 240.8 235.7 236.0 232.4	235.5 237.0 242.3 236.6 233.7 231.1	
	N ₂ = 40,000 C	YCLES	N ₂ = 250,000 CYCLES			
AB-20 CA-3 BB-19 BB-15 CB-13 AA-10	190.3 191.5 193.5 192.3 190.0	189.5 190.5 193.1 191.0 190.0 189.5	EC-21 FC-29 DA-8 EA-9 DC-30 FA-7	236.7 239.7 240.5 236.7 233.3 235.5	236.9 237.2 239.5 235.9 233.6 233.1	
	N ₃ = 250,000 C	YCLES		$N_3 = 10^6$		
BA-10 AC-24 CB-15 AB-15 CB-11 BC-31	194.0 191.8 190.2 191.3 190.4 195.5	193.1 - 189.0 192.3 - 195.3	EB-16 DB-14 FB-13 DB-15 EC-31 FB-20	235.0 235.6 234.3 237.4 239.6 233.6	- 234.5 232.3 238.4 242.2 233.9	

a = Listed in order tested

b = See Table XXXV, Volume II

TABLE B10
WEIGHT MEASUREMENTS FOR SPECIMENS TESTED FOR
RESIDUAL STRENGTH AFTER FATIGUE CYCLING UNDER CONDITION C
TASK III

24-PLY			32-PLY		
Spec.	Initial	Pre-Test	Spec.		Pre-Test
ID	Weight, gms.	Weight, gms.	ID		Weight Gms.
	N ₁ = 50 CYC	N ₁ = 1,000 CYCLES			
AA-3	191.2	191.5	EB-19	235.6	235.2
BB-20	192.8	193.9	FB-15	233.7	233.6
CB-19	191.6	191.8	DB-12	238.5	237.3
BC-28	198.6	198.4	EB-12	237.4	237.8
AC-23	190.5	190.6	FC-21	237.5	238.6
CB-14	190.3	190.7	DC-22	234.8	236.0
	N ₂ = 300 CYCLES		N ₂ = 4,000 CYCLES		
AB-13	191.6	191.3	DA-1	234.9	235.1
BB-14	197.1	196.8	EC-29	235.4	235.5
CA-5	199.9	200.0	FA-6	234.4	232.3
CC-30	190.1	189.1	FA-5	232.3	232.5
BB-17	197.1	197.4	EC-28	232.8	232.1
AA-5	191.6	191.3	DB-20	236.1	237.0
	N ₃ = 1,000 CYCLES		N ₃ = 8,000 CYCLES		
CB-20	192.4	192.2	DA-10	240.9	241.5
AA-6	190.7	191.1	EC-27	240.8	242.3
BB-16	197.4	196.5	FC-22	233.1	232.6
AC-30	188.8	188.8	DB-16	238.0	237.1
CB-18	190.0	189.1	EA-5	234.8	233.9
BA-9	191.4	190.0	F-11	230.9	232.6

a = Listed in order tested
b = See Table XXXV, Volume II

APPENDIX C

Static Test Data

TENSION TEST RESULTS FOR 24-PLY 67% 0° FIBER T300/5208 UNDAMAGED 1-INCH (25 mm) WIDE SPECIMENS TASK II TABLE C1

	Average Area, A	age 1, A	Ultimate Load, Pult'	ate d,	Ultimate Stress, Gult'	sate 85, t,	Ultimate Strain, cult' in 1 inch (25 mm)	Apparent Modulus of Elasticity E	64 to	Fatlure Location Distance from Tab	ក ខ្មា ខ្មា ខ្មា
Speciaen ID	Incr	-	KIDS	£2	K81	Mra	(1n./1n) mm/mm	or . 1sd	25	Inca	8
IMI-1706-DA	0.1208	6.77	19.7	9.18	163.3	1126	0.0106	15.1	101	٥	0
17.1-140-DB	0.1208	77.9	18.8	83.6	155.8	107	0.0102	15.0	103	0	0
MI-90-1-141	0.120i	77.5	20.4	8.8	7.691	0711	0.0110	15.1	104	00	0 (
ES-2017-1187	0.1207	6.17	19.9	4.00	v. par	1137	5010.0	7.5	, 103	5	.>
M3-8C71-1M2	0.1201	77.5	20.0	89.0	166.1	21/12	0.0107	15.1	104	3.3	1 00
ZWI-1405-8B	0.1203	77.6	18.3	81.4	152.1	1049	0.0097	15.6	108	0	o
ZWI-1436-AA	0.1216	78.5	19.7	87.6	161.6	1114	90100	7.41	101	0	0
ZWI-1436-AE	0.1218	78.6	18.2	81.0	1,9,4	1030	0.0035	15.0	103	0	0
17.1-1436-7A	0.1203	77.6	18.2	81.0	151.3	1043	2600.0	15.3	105	0	0
ED-0641-134	0.1211	76.1	20.0	89.0	164.4	1136	0.0106	15.3	105	3•3	1
ZMI-1439-FA	0.1205	77.7	20°F	2.6	168.9	1165	0.0109	15.0	103	٥,	0 1
G1-05-7-742	0.1500	0.	600	73.0	113.3	7733	0,0110	7.61	103	7.	()
1WI-1440-CA	0.1213	78.3	21.3	2.16	175.6	गटा	0,0110	15.8	601	0	0
141-1440-5B	0,1218	76.6	19.7	87.6	162.0	1117	0.0103	15.5	107	0	0
Wi-0171-I%	0.1212	78.2	20.2	89.9	166.3	7411	0,0110	14.7	101	3.3	ಹ
EH-C+17-17/2	0.1209	78.0	19.1	85.0	157.6	1087	0,0100	15.1	104	0	0
1:1-14:1-IN	0.1223	78.9	20.3	90.3	166.0	1145	1010.0	16.1	77	0	r
14.1-14.1-13B	0.1227	79.5	20.8	8.5	169.5	1169	0.0110	14.8	705	0	0
			Mean		163.2	1125	0.0105	15.2	105		
			Std. Dev.	ev.	7.5	52	0.000s	4.0	٣		
			Coef.	Coef. of Var. X	9.4	32	8.4	2.4	17		

TENSION TEST RESULTS FOR 32-PLY QUASI-ISOTROPIC T300/5208 UNDAMAGED 1-INCH (25 mm) WIDE SPECIMENS TASK II TABLE C2

	Average Area ,	9 Y	Ultimat Load, Pult'	Ultimate Load, Pult'	Ultimate Stress,	ر. وهند م و د	Ultimate Strain fult, in 1 inch (25 mm)	Slope Deviatio Stress,	Slope Deviation Stress,	Stope Strain, Strain, tn 1 inch (25, k mm)	Initial Apparent Modulus,	٥	Secondary Apparent Modulus, E	ary s,	Failure Location Distance from Tab	e c o a
Specimen ID	1nch ²	78	kip	ž	ksi	E.	in./in.(mm/mm)	ksi	M.P.a.	in./in.(mm/mm)	ps1.106	GPs	pe1-10 ⁶	g.B	Inch	H
141-1411-14 141-1411-19	0.1621	105	13.2	58.7	81.4 77.0	561 531	0.0110	54.6	378 355	0,0070	7.7	53	89.9 96.9	9 7	1.0	25 64
ZVI-1411-105	0.1598 0.1614	103 104	2.4.53	55.6 55.2	78.2 5.8	539 530	0.0105	51.3	354 352	0.0065	8.0	25.25	6.83 6.73	77	2.3	56 13
18.1-1429-1A 181-1429-1B	0.1618 0.1600	701 104	25.3 11.9	54.7 52.9	75.7	522 511	0.0098 4000.0	51.8 51.4	357 354	0.0064	8.1 8.3	56 57	6.93	48 47	8.0 0.3	51
241-1429-14 241-1429-148	0.1532	102	13.1 13.4	58.3 59.6	82.8 84.1	571 580	0.0105	52.1 48.0	359 331	0.0062	8.43	57 58	7.02 6.91	87	1.3	25.33
INI-1431-78 INI-1431-78	0.1596	10 10 10 10	9.2 2.3	% % 7.50	78.6 76.3	542 526	0.0102	53.6 49.0	370 338	0,0066	88.1	26 56	6.81	47	2.0 2.0	3 00
ZvI-1431-FA ZvI-1431-PB	0.1595	103 103	5.3 2.6	% % %	77.1	532 545	0.0098 0.0104	52.5 52.9	362 365	0.0064	8. 80 6. 61	57 56	6.87 6.66	4 7	2.5	25.5
IMI-1435-04 IMI-1435-08	0.1614	1 10 10 10 10 10 10 10 10 10 10 10 10 10	12.1	53.8 52.5	73.0 73.1	517 306	0.0100	5.4.5	374 339	0.0069	7.8	2 S	6.148 6.75	47	2.8	13
2VI-1435-RA 2VI-1435-RB	0.1602	103 103	12.2 11.4	54.3 50.7	76.2 71.2	525 491	0.00%	47.9	330 330	0.0055	8.6 7.8	52	6.84 6.78	47	1.0	88
141-1436-8A 141-1436-8B	0.1596	င် <u>ရ</u>	12.2	57.8	76.7 81.6	% %3 %3	0.0100	50.6 47.6	349 328	0.0063	8.8	55 60	6.75 6.85	47	3.5	88
			Average	-8e	77.5	£2	0.0101	51.0	352	0.0063	8.1	8	6.8	47		
			Std. Dev.	Dev.	3.3	23	0.0005	2.3	16	+0.000.	0.3	6	0.1	-		
		O)	Coef. of Var. Z	M. X	4.3	30	8.4	4.4	R	6.5	3.5	54	2.1	71		
	•															

TABLE C3
TENSION TEST RESULTS FOR 24-PLY 67% 0° FIBER T300/5208
UNDAMAGED 1-INCH (25 mm) WIDE SPECIMENS - TASK III

	Average	88 • • •	Ultimate Load Pult	ad the	Ultimate Stress	a se te a se t	Ultimate Strain in Plfnch (51 mm)	Apparent Modulus	ent Us	Fallure Location Distance From Tab	ire ince Tab
Specimen 1D	Inch	2	Kips	2	KS1	MPa Pa	in./in. (mm/mm)	ps1 · 10	e do	fnch	
2WI 1477-AA	0.1206	77.8	19.6	87.2	162.1	1118	0.0112	14.5	100	2.0	51
ZWI1477-BB	0.1207	77.8	19.2	85.4	159.1	1097	0.0108	14.7	101	1.8 8.	9#
2WI 1441-AA	0.1197	77.2	19.2	85.4	160.4	1106	0.0109	15.1	104	0.0	0
2WI1841-BB	0.1210	18.1	18.9	84.1	155.8	1074	0.0108	14.4	66	2.6	99
TWI 1443-AA	0.1205	77.77	19.1	85.0	158.1	1090	0.0110	1.4	66	2.4	61
1WI1443-BB	0.1220	78.7	18.6	82.7	152.0	1048	0.0104	14.6	[0	2.0	12
Mean Standard Deviation Coeff. of War. \$	lation . \$				157.9 3.6 2.3	1089 25 2	0.0109 0.0003 2.5	14.6 0.3 1.8	5 2 4		

TABLE C4
TENSION TEST RESULTS FOR 32-PLY QUASI-ISOTROPIC T300/5208
UNDAMAGED 1-INCH (25 mm) WIDE SPECIMENS - TASK III

	Averag	<u>e</u> •	Ultimate Load	를 죠 **	UICÍ	Ultimete Stress	Ultimate Strain in Pit nch	Slope Deviation Stress		Slope Deviation Strain, y, in 2 inch	Initial Apparent Modulus	4 1 2	Secant Modulus At Failure		Failure Location Distance	. 6 5
Specimen ID inch ===	Inch ²	Ĩ.	-	#:	ksi L	ilt MPa	in./in.(an/an)	kai y.	• • •	(50 mm) 1n./1n(mm/mm)	psi . 10	4	E.f. ps1.10	GPa	from 1	2 8
ZMI 1466-AA	0.1627	5	10.6	47.2	64.8	Ltrit	0.0082	37.3	257	0.0042	8.9	19	7.9	8	7.0	9
ZWI1466-BB	0.1637	9	11.7	52.0	71.5	493	0.0099	58.6	# 0 #	0,0080	7.3	33	7.2	22	8.0	8
1WI1466-AA	0.1627	ē.	11.7	52.0	9.17	#6#	0.0000	54.4	375	0.0062	8.8	5	8.0	55	2.2	%
14I 1466-BB	0.1638	Š	13.3	59.5	81.2	260	0.0110	36.6	252	0.0042	8.7	9	7.4	2	3.1	2
TWITT78-AA	0.1607	\$	12.2	54.3	75.6	52	0.0110	53.4	368	0.0072	7.4	2	6.9	14	9.0	8
1411478-BB	0.1627	፳	11.3	50.3	69.1	416	0.0090	35.3	5∦3	0.0040	8.5	8	7.7	23	5.6	9
Nean					72.3	198	0.0097	45.9	316	0.0056	8.2	57	7.5	25		
Coeff. of Var. \$	1951on				7.0 9.8	₽	0.0012	10.6 23.1	ឧង	17.4 30.9	6.5 5.5	8 . 0	0 4. v.	6.8 6.8		

TABLE C5a 24-PLY DAMACED HOLE TENSION RESULTS - TASK II STANDARD STRAIN RATE - 0.005 in./in./min.

Initial Tangent Modulus E_{i} ,	8.6	8.9	9.3	& & & &	& & &	9.2	8.00	8.9	8.6 9.6	8.9	0.2	2.3
Secant Modulus at Failure Esf' psi x 10 ⁶	7.7	7.7	7.6	7.7	7.8	7.8	7.3	7.6	7.6	7.5	0.2	2.5
Apparent Failure Strain e _f , in./in. in 9 in.	₩800°0	0.0095	9600*0	0.0090	0.0092	0.0086	0.0107	0,0095	0.0099	6600°0	0.0009	9.1
Gross Failure Stress, o _{ult} , ksi	64.7	73.2 75.4	72.6	69.1 79.8	71.6 81.2	66.3 82.4	78.1 71.3	71.6	75.3 81.0	74.2	5.5	7.3
Failure Load P _{ult} , kip	23.8	26.7 27.5	26.5	24.8 28.9	25.9 29.4	24.2 29.6	28.1 26.0	25.9	27.2 29.1	Mean	Std. Dev.	Coef. of Var. %
Average Gross Area, A (in. ²)	0.368	0.365 0.365	0.365	0.359	0.362 0.362	0.365	0.362 0.365	0.362	0.361			
Specimen ID	AB-16	BB-13 BC-23	cc-28	DA-7 DC-23	EA-8 EB-19	FA-4 FC-30	GA-2 GB-17	HA-5	IA-9 IC-21			

TABLE C5b 24-PLY DAMAGED HOLE TENSION RESULTS - TASK II

- 4														
	Initial Tangent Modulus E _i ,	GPa	09	62 60	65	62 62	61 62	63 49	60 61	62	64 63	62	г	2
	Secant Modulus at Failure Esf'	GPa	53	53 50	52	53 50	54 50	54 52	50 52	52	52 50	52	1	က
5 mm/mm/min.	Apparent Failure Strain	in 22.9 mm	0.0084	0.0095	9600°0	0.0090	0.0092	0.0086 0.0108	0.0107 0.0095	0.0095	0.0099	6600.0	0.000	9.1
STANDARD STRAIN RATE - 0.005 mm/mm/min	Gross Failure Stress	oult, Mra	944	505 520	501	476 550	161 1695	457 568	538 492	1 61	519 558	512	38	7
STANDARD STRA	Failure Load, D	rult, Ku	106	119 122	118	110 129	115 131	108 132	125 116	115	121 129	Mean	Std. Div.	Coef. of Var. %
	Average Gross Area, A	mm	237	235 235	235	232 234	234 234	235 232	234 235	234	233 232			
		Specimen ID	AB-16	BB-13 BC-23	cc-28	DA-7 DC-23	EA-8 EB-19	FA-4 FC-30	GA-2 GB-17	HA-5	IA-9 IC-21			

TABLE C6a 24-PLY DAMAGED HOLE TENSION RESULTS - TASK II

HIGH STRAIN RATE - 5 in./in./min.

				Apparent	Initial
£	Average Gross Area, A	Failure Load,	Gross Failure Stress	Fracture Strain, f, in./in. fn 9 in.	Tangent Modulus $E_1, 06$
Specimen 1D	(1n.)	Fult, Kip	, aTn		•
AB-19	2,365	22.7	62.3	0.0073	4*8
DC-25	0.362	24.7	68.1	0.0082	8.7
EA -3	0.362	25.2	2.69	9800.0	8.5
HC-28	0.362	5h.9	68.8	0.0082	0.6
118-11	0.359	24.7	68.8	0.0085	8.6
		Mean Std. Dev. Coef. of Var. %	67.5 3.0 4.4	0.0082 0.0005 6.3	8.7 0.2 2.5

TABLE C6b 24-PLY DAMAGED HOLE TENSION RESULTS - TASK II

HIGH STRAIN RATE - 5 mm/mm/min.

Snerimen TD	Average Gross Area A	Failure Load D KN	Gross Failure Stress	Apparent Fracture Strain f, mm/mm	Initial Tangent Modulus
		tult,	oult, ma	D*022 HT	p; Gra
AB-19	235.5	101.0	429.5	0.0073	58
DC-25	233.5	109.9	469.5	0.0082	09
EA-3	233.5	112.1	9*084	0.0086	59
HC-28	233.5	110.8	η•η <i>L</i> η	0,0082	62
IB-11	231.6	109.9	4.474	0.0085	59
		Mean Std. Dev. Coef. of Var. %	465.4 21 4	0.0082 0.0005 6.3	60 1 3

TABLE C7a 32-PLY DAMAGED HOLE TENSION RESULTS - TASK 11 STANDARD STRAIN RATE - 0.005 in./in./min.

			500	Apparent	Secant	Initial
Specimen ID	Gross Area A (in. ²)	Failure Load, Pult, kip	Failure Stress, _{Tult} , ksi	Strain, Fr, in./in. in 9 in.	at Failure Esf'106 psix106	Modulus E_1 , 6
JA-8 JB-17	0.483	21.0	43.5 41.2	0.0089	0.4	5.3
KC-25 KC-26	0.483 0.484	20.0 18.5	41.4 38.2	0.0082 0.0079	. 4 0 0 0	5.2
LB-13	0.481	19.0	39.5	6200.0	5.0	٦.
MA-3 MC-30	0.483	19.3 20.0	39.9 41.5	0.0081	5.0 6.4	5.0
NA-7 NA-9	0.484	18.3 19.5	37.7 40.5	0.0078	4.9	5.0
PB-11 PC-24	0.483 0.484	20.5 19.0	42.4 39.3	0.0086	ο. 	5.0
92-26	984.0	19.8	1.04	0.0083	4.9	5.1
RB-12	0.480	20.0	41.6	0,0084	5.0	5.1
SB-1 2 SC-29	0.480	18.5 19.0	38.5 39.8	0.0078	4.9	5.5. 6.5.
		Mean Std. Dev. Coef. of Var. %	40.4 1.6 4.0	0.0082 0.0003 4.2	0.1	5.1 0.1 2.0

TABLE C7b 32-PLY DAMAGED HOLE TENSION RESULTS - TASK II STANDARD STRAIN RATE - 0.005 mm/mm/min.

	Average Gross Area _A A		Gross Failure Stress,	Apparent Fracture Strain	Secant Modulus at Failure Esf	Initial Tangent Modulus E _i
Specimen ID	(mm/s)	Pult, KN	Gult, MPa	in 228.6 mm	GPa	GPa
JA-8 JB-17	311.6	93.4 89.0	300 284	0.0089 0.0085	34 33	37 35
KC-25 KC-26	311.6 312.3	89.0 82.3	285 263	0.0082 0.0079	35 33	36 36
LB-13	310.3	84.5	272	6200.0	35	36
MA-3 MC-30	311.6 311.0	85.9 89.0	275 286	0.0081 0.0085	35 34	36 35
NA-7 NA-9	312.3 310.3	81.4 86.7	260 279	0.0078 0.0081	34 35	35 36
PB-11 PC-24	311.6 312.3	91.2	292 271	0.0086	34 33	35 35
92-26	313.5	∵ ₩	281	0,0083	34	35
RB-12	7.605	0.5	287	1800.0	35	35
SB-12 SC-29	309.7 307.7	72.3 34.5	265 274	0.0078 0.0077	35 35 36	3.7 3.6
		Mean Std. Dev. Geof. of Var. A	279	5,000°0 6,000°0	34 14	35 1

TABLE C 8:a
32. PLY DAMAGED HOLE TENSION RESULTS - TASK II
HIGH STRAIN RATE - 2 in./in./min

Specimen ID	Average Gross Area, A (in. ²)	Failure Load, Pult, kip	Gross Failure Stress, Oult, ksi	Apparent Fracture Strain, ef, in./in. in 9 in.	Secant Modulus at Failure Eff'o	Initial Tangent Modulus Ei, 106
JC-29	0.485	18.4	38.1	6,0079	8.4	5.3
NC-29	724.0	19.1	40.3	0.0085	4.7	5.3
PA-8	0.483	22.3	46.2	0.0105	7.7	5.0
QB-19	0.485	18.7	38.5	0.0080	4.8	5.2
SC-21	0.472	17.4	36.8	0.00.74	5.0	5.5
	Mean		0.04	0,0085	7.4	5.3
	Std. Dev.	Dev. . of Var. %	13.4	12 14.2	o '/	0.2 3.5

TABLE C 6b 32-FLY DAMAGED HOLE TENSION RESULTS - TASK 11 HIGH STRAIN RATE - 2 mm/mm/min.

Specimen ID	Average Gross Area A	Failure Load, Pult' (KN)	Gross Fallure Stress, Jult, (MPa)	Apparent Fracture Strain, Ef. mm/mm	Secant Modulus At Failure Egf* (GPa)	Initial Tangent Modulus Ei, (GPa)
JC-29	313	81	263	0.0079	33	37
NC-29	306	85	278	0.0085	32	37
PA-8	312	66	319	0.0105	30	34
0.B-19	313	83	265	0.0080	33	36
SC-21	305	77	254	η / 00°0	34	38
	Mean		276	0.0085	32	37
	Std. Dev.	۷.	23	12	1	-
	Coef. o	Coef. of Var. %	9.2	14.2	5	4

TABLE C9a 24-PLY DAMAGED HOLE COMPRESSION RESULTS (WITH FATIGUE SUPPORT) - TASK II STANDARD STRAIN RATE - 0.005 in./in./min.

				Apparent	Secant	Secant
	Average	ค ห เโ เ ซนิ	Gross Failure	Fracture Strain.	Modulus at Failure	Modulus at 30 ksi
	Area, A	Load,	Stress,	er, in./in.	E E	三 第 3 3 3 3 3
Specimen ID	$(in.^2)$	Pult, kip	$\sigma_{\mathbf{f}}$, ksi	in 9 in.	psi x 106	psi x 106
AA-h	0.365	16.1	144	0.0055	8.1	8.6
AA -6	0.362	16.6	45.9	0*0026	ଦ୍ର ୧	6° 6°
AB-18	0.365	16.4	45.0	0.0056	8.1	8.5
BB-18	0.362	17.1	47.3	0.0058	8.2	9.8
8 - ₽3	0.365	15.7	43.0	0.0051	8.5	8.6
CC-21	0.365	15.8	43.3	0.0054	8.1	8.9
DB-11	0.359	14.8	41.2	0.0051	8.1	8.9
DB-17	0.362	17.2	47.5	0900*0	8,0	9 . 8
EC-22	0.362	18.1	50.0	0.0062	8.1	8.7
FB-14	0.362	16.0	7.44	0.0054	8.2	8.7
GB-19	0.362	17.1	47.3	0.0058	8.2	9.8
HB-13	0.362	14.5	0.04	0,0048	8. 4	8.5
HB-18	0.361	14.6	†* 0†	0.0047	8.6	8.9
IA-3	0.365	15.8	43.3	0.0054	8.1	8.7
IC-59	0.365	15.9	43.9	0.0054	8,5	9 . 8
		Mean	4.44	0.0054	8.2	8.7
		Std. Dev.	2.8	0.0004	0.2	0.1
		Coef. of Var. %	6.3	7.6	2.0	1.7

24-PLY DAMAGED HOLE COMPRESSION RESULTS (WITH FATIGUE SUPPORT) - TASK 11 STANDARD STRAIN RATE - 0.005 mm/mm/min. TABLE C9b

ss Failure Failure Strain, at Failure 1.		Average		Gross	Apparent Fracture	Secant Modulus	Secant Modulus
235 71.6 304 0.0055 56 57 73.0 310 0.0056 57 73.0 310 0.0056 57 73.0 310 0.0056 56 57 73.0 310 0.0056 56 57 70.3 299 0.0051 59 70 232 65.8 284 0.0051 56 55 234 80.5 328 0.0062 56 234 76.1 326 0.0054 57 234 64.9 279 0.0054 57 234 64.9 279 0.0054 57 235 70.7 303 0.0054 57 70.7 303 0.0054 57 70.7 303 0.0054 57 70.7 303 0.0054 57 70.7 303 0.0054 57 70.7 303 0.0054 57 70.7 303 0.0054 57 70.7 303 0.0054 57 70.0054 19 0.00054 11 80.	Ε	Gross Area, A	Fail Load	Failure Stress, o _f , MPa	Strain, $\epsilon_{\rm f}$, in./in.	at Failure Esf	at 207 MPa E _s 207,
71.6 304 0.0055 56 73.8 316 0.0056 57 73.0 310 0.0056 57 76.1 326 0.0051 59 76.8 284 0.0054 56 76.5 328 0.0054 56 71.1 305 0.0062 56 76.1 326 0.0054 57 76.1 326 0.0054 57 76.1 326 0.0054 57 76.1 326 0.0054 57 76.1 326 0.0054 57 76.1 326 0.0054 57 76.1 326 0.0054 57 76.1 326 0.0054 57 76.1 326 0.0054 57 76.1 326 0.0054 57 76.3 299 0.0054 57 76.4 303 0.0054 57 84an 306 0.0054 57 84a. bev. 19 0.0004 1	.		212	-1	111 CC • 9 IIIII	ura	ura
73.6 73.6 73.0 310 0.0056 56 76.1 326 0.0051 57 69.8 296 0.0051 59 70.3 284 0.0054 56 71.1 328 0.0054 57 76.1 328 0.0054 57 76.1 326 0.0054 57 76.1 326 0.0054 57 76.1 326 0.0054 57 70.3 299 0.0054 57 70.3 393 0.0054 57 8td. bev. 19 0.0054 57 Coef. of Var. 2 6.3 7.6 2		235	71.6	304	0.0055) <u>5</u>	59
76.1 326 0.0058 57 76.1 326 0.0051 59 70.3 299 0.0054 56 80.5 328 0.0054 55 80.5 345 0.0062 56 71.1 305 0.0054 57 76.1 326 0.0054 57 70.3 299 0.0054 56 70.7 303 0.0054 57 8td. Dev. 19 0.0004 1		234 224	(3°8	316 310	0.0056	5.7 7.3	61 50
76.1 326 0.0053 57 69.8 296 0.0054 56 70.3 299 0.0054 56 65.8 284 0.0051 56 76.5 328 0.0062 56 80.5 345 0.0062 56 71.1 305 0.0054 57 76.1 326 0.0048 58 64.5 276 0.0048 58 64.9 279 0.0048 58 64.9 279 0.0048 56 70.3 299 0.0054 57 Mean 306 0.0054 57 Std. Dev. 19 0.0004 1 Std. Dev. 19 0.0004 2 Coef. var. % 6.3 7.6 2) [0]) · (₹ ¦	
69.8		234	76.1	326	0.0058	22	59
70.3 299 0.0054 56 65.8 284 0.0051 56 76.5 328 0.0060 55 80.5 345 0.0062 56 71.1 305 0.0054 57 76.1 326 0.0058 57 64.5 276 0.0048 58 64.9 279 0.0047 59 70.3 299 0.0054 57 70.3 299 0.0054 57 846. Dev. 19 0.0054 57 Coef. of Var. % 6.3 7.6 2		235	8.69	296	0.0051	59	59
65.8 284 0.0051 56 76.5 328 0.0060 55 80.5 345 0.0062 55 71.1 305 0.0054 57 76.1 326 0.0058 57 64.5 276 0.0048 58 64.9 279 0.0047 59 70.3 299 0.0054 56 70.7 303 0.0054 57 8td. Dev. 19 0.0004 1 Coef. of Var. 2 6.3 7.6 2		235	70•3	299	0.0054	56	61
76.5 328 0.0060 55 80.5 345 0.0062 56 71.1 305 0.0054 57 64.5 276 0.0048 58 64.9 279 0.0054 59 70.3 299 0.0054 56 70.7 303 0.0054 57 Mean 306 0.0054 57 Std. Dev. 19 0.0004 1		232	65.8	284	0.0051	26	61
80.5 345 0.0062 56 71.1 305 0.0054 57 76.1 326 0.0058 57 64.5 276 0.0048 58 64.9 279 0.0047 59 70.3 299 0.0054 56 70.7 303 0.0054 56 8td. Dev. 19 0.0004 11 Coef. of Var. 2 6.3 7.6 2		234	76.5	328	0900*0	55	59
71.1 305 0.0054 57 76.1 326 0.0058 57 64.5 276 0.0048 58 64.9 279 0.0047 59 70.3 299 0.0054 56 70.7 303 0.0054 56 8td. Dev. 19 0.0004 1 Coef. of Var. 2 6.3 7.6 2		234	80.5	345	0.0062	56	09
76.1 326 0.0058 57 64.5 276 0.0048 58 64.9 279 0.0047 59 70.3 299 0.0054 56 70.7 303 0.0054 57 Mean 306 0.0054 57 Std. Dev. 19 0.0004 1 Coef. of Var. 2 6.3 7.6 2		234	71.1	305	0.0054	57	09
64.5 276 0.0048 58 64.9 279 0.0047 59 70.3 299 0.0054 56 70.7 303 0.0054 57 Mean 306 0.0054 57 Std. Dev. 19 0.0004 57 Coef. of Var. % 6.3 7.6 2		234	76.1	326	0.0058	57	59
64.9 279 0.0047 59 70.3 299 0.0054 56 70.7 303 0.0054 57 Mean 306 0.0054 57 Std. Dev. 19 0.0004 1 Coef. of Var. % 6.3 7.6 2		234	64.5	276	0,0048	58	59
5 70.3 299 0.0054 56 5 70.7 303 0.0054 57 Mean 306 0.0054 57 Std. Dev. 19 0.0004 1 Coef. of Var. % 6.3 7.6 2		233	6•19	279	2,000,0	59	61
5 70.7 303 0.0054 57 Mean 306 0.0054 57 Std. Dev. 19 0.0004 1 Coef. of Var. % 6.3 7.6 2		235	70•3	299	0.0054	99	09
306 0.0054 57 19 0.0004 1 2 6.3 7.6 2		235	70.7	303	0.0054	57	59
306 0.0054 57 19 0.0004 1 2 6.3 7.6 2				,	0	ţ	(
2 6.3 7.6 2			Mean	300	0.0054),ς	09
% 6.3 7.6 2			Std. Dev.	19	0.0004		1
			Coef. of Var. %	6.3	7.6	2	C1

"TAPLE C10a 24-PLY DAMAGED HOLE COMPRESSION RESULTS (WITH FATIGUE SUPPORT) - TASK II HIGH STRAIN RATE - 5 in./in./min.

Specimen ID	Average Gross Area, A (in.2)	Failure Load, P _{ult} , kip	Gross Failure Stress, Oult, ksi	Apparent Fracture Strain, f, in./in.	Initial Tangent Modulus $\frac{E_{i}}{x}$, 06
EC-23	0.362	13.0	36.0	0.0045	8.6
FB-13	0.362	13.3	36.8	9,000,0	9.5
FC-21	0.359	13.4	37.5	7400.0	8.6
GB-14	0.362	12.0	33.1	η η00° 0	8.2
gc-30	0.365	15.0	41.1	0.0052	8.7
		Mean Std. Dev. Coef. of Var. %	36.9 2.9 7.8	0.0047 0.0003 6.7	8.7 0.4 4.1

TABLE C10b 24-PLY DAMAGED HOLE COMPRESSION RESULTS (WITH FATIGUE SUPPORT) - TASK II

HIGH STRAIN RATE - 5 mm/mm/min.

Apparent Fracture Initial Strain Tangent Apparent Apparent Tangent Apparent	0.0045 59	79 9700*0	0.0047	0.0044	0.0052 60	0.0047 60 0.0003 3
Gross ure Failure d Stress KN Gult, MPa	3 248	2 254	5 259	t 226	7 283	n 254 Jev. 20 Var. % 8
Average Gross Failure Area, A Load (mm ²) P _{ult} , KW	233.5 57.8	233.5 59.2	231.6 59.6	233.5 53.4	235.5 66.7	Mean Std. Dev. Coef. of Var. %
Specimen ID	EC-23	FB-13	FC-21	GB-14	GC-30	

TABLE CILA 32-PLY DAMAGED HOLE COMPRESSION RESULTS (WITH FATICUE SUPPORT) - TASK II STANDARD STRAIN RATE - 0.005 in./in./min.

Specimen ID	Average Gross Area, A (in. ²)	Failure Load, P.,, kip	Gross Failure Stress, Oult, ksi	Apparent Fracture Strain, f, in./in.	Secant Modulus at Failure E E's	Initial Tangent Moduluc E;
JC-21 JC-26	0.481	16.5	34.3	0.0073	7.4 7.4	5.2
KB-13	0.485	16.8	34.6	0.0075	9.4	5.1
LA-8 LC-29	0.482	17.5	36.3 35.2	0,0076 0,0074	8° †	5.5
MA-7 MC-24	0.483 0.482	15.8 16.0	32.6 33.2	0.0069	L.4	.4.62 .4.63
NB-11	0.481	17.5	36.3	0.0077	۲.4	5.3
PC-18	0.483	16.3	33.6	0.0070	4.8	5.2
QA-5 QB-16	0,486	15.6	32.2 34.8	0.0068	8.4.4	5.2
RA-4	0.483	15.4	31.9	9900.0	6.4	5.0
RC-30	0.489	17.0	35.4	4,200.0	4.8	5.3
S-15	0.483	15.5	32.1	9900.0	4.8	5.0
;		Mtan Std. Dev. Coef. of Var. Z	34.2 1.5 4.5	0.0004 5.3	4.8 0.1 1.6	5.1 0.1 2.0

TARLE C11h 32-PLY DAMAGED HOLE COMPRESSION RESULTS (WITH FATIGUE SUPPORT) - TASK II STANDARD STRAIN RATE - 0.005 mm/mm/min.

Specimen ID	Average Gross Area, A (mm ²)	Failure Load, Pult, KN	Gross Failure Stress,	Apparent Fracture Strain fr. mm/mm in 228.6 mm	Secant Modulus at Failure Esf GPa	Initial Tangent Modulus Ei GPa
JC-21 JC-26	310.3 314.2	73.4 77.8	23.7 248	0.0073 0.0077	32 32	3.5 3.5
KB-13	312.9	L•4L	23.9	0.0075	3.2	35
IA-8 IC-29	311.0	77.8 75.6	250 243	0.0076 0.0074	333	36 35
MA-7 MC-24	311.6	70.3	22 5 230	0,0000	32 33	35 36
NB-11	310.3	77.8	250	0.0077	32	37
PC-18	311.6	72.5	232	0.0000	33	36
QA-5 QB-16	313.5	69.4 75.6	222 240	0.0068 0.0073	3333	36 35
RA-4 88-18	311.6	68.5	220	9900*0	34	35
RC-30	315.5	9.57	544	٥.0074	33	37
S-15	311.6	68.9	221	9900°C	33	35
		Mean Std. Dev. Goef. of Var.	23 6 10 % 5	0.0072 0.0004 5	33	35 1 2

TABLE C12a 32-PLY DAMAGED HOLE COMPRESSION RESULTS - TASK II (41TH FATIGUE SUPPORT)

HIGH STRAIN RATE - 0.5 in./min.

Specimen ID	Average Gross Area, A (in. ²)	Failure Load, Pult, kip	Gross Failure Stress, Gult, ^k si	Apparent Fracture Strain, ef, in./in. in 9 in.	Secant Modulus At Failure Esf, psi x 106	Initial Tangent Modulus E1,
KA-6	984.0	16.3	33.5	0.0072	4.7	5.3
KA- 8	984.0	13.9	28.6	0.0057	5.0	5.0
NB-15	984.0	11.11	22.9	9400.0	5.0	5.0
RA-3	0.482	13.3	27.6	9900.0	4.2	8.4
RC-26	0.483	16.3	33.8	0.0073	9.4	5.2
9 0	Mean Std. Dev. Coef. of Var.	84	29.3 4.5 15.5	0.0063 0.0010 18.1	4.7 0.3 7.1	5.1 0.2 3.9

TABLE C12b
32-PLY DAMAGED HOLE COMPRESSION RESULTS - TASK II
(WITH FATIGUE SUPPORT)

HIGH STRAIN RATE - 0.5 mm/mm/min.

Specimen ID	Average Grous Area, A (mm ²)	Failure Load, Pult, (KW)	Gross Failure Stress, Gult, (MPs)	Apparent Fracture Strain, Ef, mm/mm in 229 mm	Secant Modulus At Failure Raf* (GPa)	Initial Tangent Modulus Els (GPa)
K4-6	211	. 6				
•	* TC	2	231	0.0072	8	37
8-8	314	82	197	0.0057	34	37
NB-15	314	64	158	9400.0	ηE	, 1
RA-3	311	59	190	9900.0	53	
RC-26	312	73	233	0.0073	35	36 8
	Mean		202	0.0063	25	35
	Std. Dev.	•	31	0.0011	α	.
ŭ	Coef. of Var.	%	16	18.1	7	7

TABLE C13a STATIC TENSION TEST RESULTS - TASK 111

Specimen	Average Gross Area, A	Failure Load	Gross Failure Stress	Apparent Strain at Failure f. in./in.	Secant Modulus at Failure Et.	Initial Tangent Modulus
OI	in. ²	P _{ult} , kips	$\sigma_{\rm ult}$, ksi	in 9 in.	psi x 106	psi x 106
24 FLY LAMINAIE	INAIE		!	,	ı	
AB18	0.3628	24.6	67.8	0.0092	7.4	တ္ဖ
BA-2	0.3652	25.8	70.9	0.0099	7.2	×.7
cc-22	0.3577	26.4	73.8	0.0103	7.2	6.8
Mean			70.8	0.0098	7.2	8.8
Std. Dev.			3.0	9000.0	0.1	0.1
Coeff. of Var.	ar. %		4.2	5.7	1.6	1.3
32 PLY LAMINATE	INATE					
DC-24	0.4871	18.4	37.8	0.0000	4.2	5.0
EC-26	0.4862	20.2	41.5	0.0092	4.5	5.3
FB-12	0.4791	19.5	40.7	0.0083	6.4	5.0
Mean			40.0	0.0088	4.5	5.1
Std. Dev.			1.9	0.0005	0.4	0.2
Coeff. of Var.	ar. %		6.4	5.3	7.7	3.7

TABLE C13b STATIC TENSION TEST RESULTS - TASK III

	Average	Failure	Gross	Apparent Failure	Secant Modulus	Initial Tangent
Specimen ID	Area ₂ A	Load P _{ult} , KN	Stress $\sigma_{ m ult},~{ m MPa}$	Strain £, mm/mm	at Failure E _{sf} , GPa	Modulus E, GPa
24 PLY LAMINATE	INATE					
AB-18	234	109.4	467	0.0092	51	61
BA-2	236	114.8	687	0.0099	67	09
CC-22	231	117.4	509	0.0103	67	62
Mean			488	0.0098	50	62
Std. Dev.			20.7	0.0006	3.0	0.8
Coeff. of Var.	%		4.2	5.7	1.6	1.3
32 PLY LAMINATE	INATE					
DC-24	314	81.8	261	0.0000	29.	34
EC-26	314	6.68	286	0.0092	31.	37
FB-12	309	86.7	281	0.0083	34	34
Mean			275	0.0088	31	35
Std. Dev.			13.1	0.0005	2	-
Coeff. of Var.	%		6.4	5.3	∞	7
-				,		

TATLE C14a
STATIC COMPRESSION TEST
RESULTS WITH FATIGUE SUPPORT - TASK III

Specimen ID	Average Gross Area, A in.2	Failure Load Pult, kips	Gross Failure Stress Gult, ksi	Apparent Strain at Failure f in /in. in 9 in.	Secant Modulus at Failure Ef 106	Secant Modulus E a psi x 10 ⁶
24 PLY LAMINATE	INATE					
AC-28	0.3672	17.8	48.3	0.0077	6.3	8.0
BC-30	0.3601	14.5	40.3	0,0056	7.2	8.3
cc-25	0.3645	18.5	50.8	9300.0	5.6	8.0
Mean			46.5	0.0073	7. 9	8.1
Std. Dev.			5.5	0.0015	0.8	0.2
Coeff. of Var.	%		11.8	21.1	12.6	2.2
32 PLY LAMINATE	INATE					
DA-2	0.4898	17.5	35.7	0.0094	3.8	7:6
EB-14	0.4884	17.2	35.3	0.0000	3.9	4.6
FB-17	0.4856	17.5	36.0	9600.0	3.8	4.7
Mean			35.7	0.0093	3.8	9.4
Std. Dev.			0.4	0.0003	0.1	0.1
Coeff. of Var.	2 :		1.0	3,3	2.3	1.3

a = Secant Modulus $E_{\rm s30}$ at 30 ksi for 24-ply laminate and $E_{\rm s20}$ at 20 ksi for 32-ply laminate

TABLE C14b
STATIC COMPRESSION TEST
RESULTS WITH FATIGUE SUPPORT - TASK III

	Average Gross	Failure	Gross Failure	Apparent Failure	Secant Modulus	Secant
Specimen ID	Area A	Load P _{ult} , KN	Stress $\sigma_{ m ult},~{ m MPa}$	Strain • mm/mm	at Failure $E_{\rm sf}$, GPa	E a GPa
24 PLY LAMINATE	ATE					
AC-28	237	79.2	333	0.0077	73	5.5
BC~30	232	64.5	278	0.0056	50	57
CC-25	235	82.3	350	0.0086	39	55
Mean			321	0.0073	77	56
Std. Dev.			37.9	0.0015	9	- 1
Coeff. of Var.	%		11.8	21.1	13	2
32 PLY LAMINATE	ATF					
DA-2	316	77.8	246	0.0094	26	31
EB-14	315	77.0	243	0.0000	27	31
FB-17	313	77.8	248	9600.0	26	32
Mean			246	0.0093	26	32
Std. Dev.			2.8	0.0003	p-i	-
Coeff. of Var.	%		1.0	3.3	2	,

a = Secant modulus $E_{\rm s30}$ at 30 ksi for 24-ply laminate and $E_{\rm s20}$ at 20 ksi for 32-ply laminate

TABLE C15a
STATIC COMPRESSION TEST
RESULTS WITH 4-BAR COLUMN BUCKLING SUPPORT - TASK III

Specimen	Average Gross	Failure	Failure	Apparent Strain at	Secant Modulus	Secant Moduius
a a	Area, A in. 2	Load P _{ult} , kips	Stress $\sigma_{ m ult}$, ksi	Failure f in./in.	at Failure Ef	Es a psi x 106
24 PLY LAMINATE	IATE					
AB-17	0.3672	14.5	39.5	0.0051	7.8	8.9
BC-26	0.3648	16.5	45.2	0.0061	7.4	8.8
CB-17	0.3648	15.0	41.1	0.0056	7.3	8.7
Mean			41.9	0.0056	7.5	8.8
Std. Dev.			2.9	0.0005	0.2	0.1
Coeff. of Var. %	%		7.0	8.9	2.9	1.1
32 PLY LAMINATE	ATE					
DA-4	0.4898	15.0	30.6	0.0065	4.7	6.4
EA-2	0.4868	20.0	41.1	0.0041	4.5	5.00
FB-16	0.4870	16.3	33.4	0.0071	4.7	6.9
Mean			35.0	0.0076	4.6	6.4
Std. Dev.			5.4	0.0014	0.1	0.1
Coeff. of Var. %	2		15.5	18.0	2.3	1.4

a \approx Secant modulus E_{830} at 30 ksi for 24-ply laminate and E_{820} at 20 ksi for 32-ply laminate.

		€					AFVAL-			LAURAT	360-19		SSIFIED	UNCLA
	GH -												2015	
700 T	3		0 G		H		6	668	٥	-	HH		•	
	<u>0</u>		2 A B B B B B B B B B B B B B B B B B B	- 21 - 21 - 11		1 10 14 1	A A	ž	0	₽	ø	ର 🏻		0202
		• • • • • • • • • • • • • • • • • • •	\mathbf{H}	$\Pi\Pi$	\blacksquare	C.			6	Q I		0	₹	<u>c</u>
	2 2		() ()		$\mathbf{F}_{\mathbf{a}}\mathbf{H}$	H	♥			Há.	(c)			Hall
										•	0		0 U	
			NEC		G									

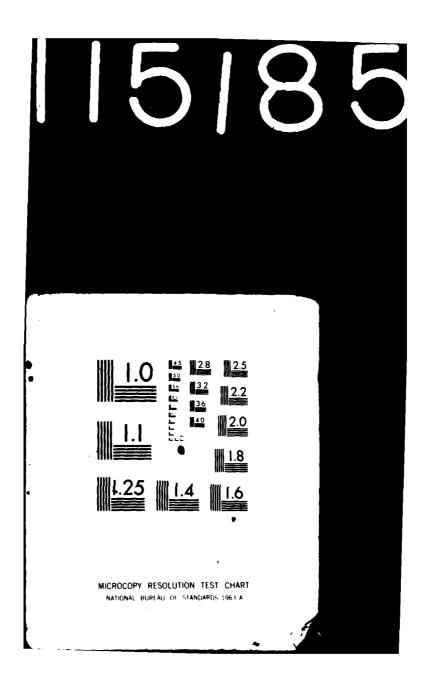


TABLE C15b
STATIC COMPRESSION TEST
RESULTS WITH 4-BAR COLUMN BUCKLING SUPPORT - TASK III

Specimen ID	Average Gross Area, A	Failure Load P KN	Gross Failure Stress P MPa	Apparent Failure Strain	Secant Modulus at Failure	Secant Modulus E
24 PLY LAMINATE	IATE	ntr	nt t	1	, JS	
AB-17	237	64.5	272	0.0051	53	61
BC-26	235	73.4	312	0.0061	51	61
CB-17	235	2.99	283	0.0056	51	09
Mean			289	0.0056	52	61
Std. Dev.			20	0.0005	2	
Coeff. of Var. %	%		7	8.9	3	1
32 PLY LAMINATE	IATE					
DA-4	316	66.7	211	0.0065	33	34
EA-2	314	89.0	283	0.0091	31.2	35
FB-16	314	72.7	230	0.0071	32.4	34
Mean			241	0.0076	32	34
Std. Dev.			37	0.0014	1	-
Coeff. of Var.	%		16	18.0	2	

a = Secant modulus E_s 30 at 30 ksi for 24-ply laminate and E_s 20 at 20 ksi for 32-ply laminate.

TABLE C16 a 24-PLY DAMAGED HOLE TENSION RESIDUAL STRENGTH RESULTS - TASK II

No. of		Average		Gross	Apparent Pailure	Secant	Initial Tangent
Fatigue Cycles, N	Specimen	Gross Area, A	Failure Load	Failure Stream	Strain f, in./in.	at Failure Sf.	Modulus Eg.
Completed	a	7°01	rult, Kip	Jule, Kai	in 9 in.	psf X 10°	ps1 X 10
4000	AB-13	0.365	28.0	76.7	0.0100	7.7	9.8
	PA-9	0.362	29.9	82.7	0.0106	7.8	8.9
	CC-23	0.362	28.6	78.7	0.0107	7.3	8.7
	EA-7	0.362	27.5	76.0	0.0097	7.8	8.8
	EC-27	0.365	29.5	80.8	0.0095	8.5	9.6
	FC-25	0.365	28.2	77.4	0.0101	7.7	9.5
	CB-16	0.363	30.1	83.0	0.0115	7.2	8.9
	HC-24	0.365	29.9	81.9	0.0115	7.1	9.6
	IA-1	0.360	27.2	75.5	0.0100	7.6	9.1
9000	AA-7	0.363	28.5	78.4	0.0098	8.0	9.0
	BC-30	0.362	31.8	87.7	0.0117	7.5	8.8
	CB-16	0.360	29.5	82.0	0.0111	7.4	8.8
	DC-29	0.362	31.5	86.9	0.0113	7.7	8.8
	EC-24	0.366	29.5	79.6	0.0100	8.0	4.6
	FB-11	. 368	29.2	79.4	0.0108	7.3	8.7
	FC-26	v. 363	26.2	72.3	0.0092	1.9	æ.
	GC-22	0.362	29.3	81.0	0.0106	7.7	9.0
	18-15	0.360	29.5	81.9	0.0112	7.3	8.8
12000	AA-5	0.368	30.0	81.5	0.0114	7.2	9.0
	AC-27	0.366	29.5	90.6	0.0111	7.8	9.0
	BC-21	0.365	31.0	85.0	0.0116	7.3	8.7
	CB-14	0.363	30.0	82.6	0.0112	7.4	9.0
	DA-10	0.342	31.5	92.2	0.0126	7.3	9.1
	DB-15	0.365	31.3	85.6	0.0129	9.9	8 .3
	GB-18	0.360	29.8	82.6	0.0106	7.8	e.
	IA-2	0.362	29.0	80.0	0.0108	7.4	6.8
20000	AC-25	0.367	30.7	83.7	0.0113	7.4	9.0
	CB-17	0.365	32.6	89.4	0.0122	7.3	9.0
	FB-15	0.365	30.3	83.0	0.0111	7.5	9.0
	CC-24	0.360	30.0	83.3	0.0112	7.5	8.7
	66-25	0.362	28.8	79.4	0.0107	7.4	6.8
40000	BC-25	0.364	32.4	89.1	0.0118	7.6	6.7
	CB-19	0.364	31.5	86.5	0.0107	8 .1	9.1
	FC-27	0.366	32.4	88.4	0.0111	0.0	9,1
	6 - 40	0.329	31.9	88.8	0.0116	7.7	9.6
	¥C-30	0.362	30.1	83.3	0.0107	7.8	e. 6.

TABLE C16b

24-PLY DAMAGED HOLE TENSION RESIDUAL STRENGTH RESULTS - TASK II

No. of Fatigue Cycles, M Completed	Specimen ID	Average Gross Area, A	Failure Load Pult, KN	Gross Failure Stress Git, We.	Apparent Failure Strain f, mm/mm	Secant Modulus at Pailurs at,	Initial Tangent Modulus E.
0004	AB-13 BA-9 CC-23	235 234 234	125 133	529 570	0.0100	200	* 55
	EA-7 EC-27 FC-25 GB-16 BC-26	នៃក្នុងក្នុង	322333	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.0097 0.0095 0.0095 0.0101 0.0115	5 % & E & S	32823
0000	1A-1 AA-7 BC-30 BC-30	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14	521 865 865 865	0.0100 0.0098 0.0117 0.0111	2222	:5555
	EC-24 EC-24 FC-26 GC-22	186338	200103	2 4 4 4 5 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5	0.0100 0.0108 0.0092 0.0106	##8##	; 2
13000	AA-5 AC-27 BC-21 GB-14 DA-10 GB-13	12324222		562 586 570 570 570 570	0.0114 0.0114 0.0116 0.0112 0.0126 0.0129	\$ \$ \$ \$ \$ \$ \$ \$ \$	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
20000	IA-2 A-25 G-117 G-15 G-15	233 233 233 233 233 233	129 137 138 138	552 572 572 574 574	0.0108 0.0113 0.0122 0.0111	22822	58589;
0000+	MC-25 CB-19 CR-27 GA-9 MC-30	វត្តត្តិត្តត្	779 7 77	547 508 518 518 518	0.0107 0.0118 0.0107 0.0111 0.0116	# # # # # # # #	38888

TABLE C17a
24-PLY DAMAGED HOLE COMPRESSION RESIDUAL STRENGTH RESULTS - TASK II
(With Fatigue Supports)

¥o. of		Average		Gross	Apparent	Secant	Secant
Patigue Color		Gross	Pallure	Patlure	Strain	at Eaflure	at 30 ks1
Completed	10	fin.2	Pult, kip	orrens of kai	1, 111./11. 1n 9 1n.	psi X 106	ps1 X 106
4000	AB-14	0.368	17.5	47.6	0.0064	7.5	8.3
	AC-29	0.366	16.5	45.1	0.0057	7.9	8.5
	BA-1	0.357	16.0	8.44	0.0057	7.9	8.6
	DC-22	0.362	18.0	50.0	0.0064	7.8	8.6
	EC-25	0.362	15.5	42.9	0.0055	7.8	8.5
	FB-19	0.364	17.3	47.4	0.0062	1.1	9.6
	FC-24	0.363	15.8	43.4	0.0054	8.0	8.4
	CA-4	0.362	16.8	46.3	0.0060	7.8	8.3
	HA-2	0.363	14.0	38.5	0.0050	1.1	8.3
	HA-7	0.361	19.5	54.0	0.0072	7.5	9.6
000	AC-24	0.365	16.6	42.4	0.0057	8.0	8.4
	CB-12	0.361	17.3	47.9	0,0060	8.0	8.9
	DA-5	0.362	15.4	42.2	0.0053	8.0	8.5
	DB-18	0.361	17.5	48.5	0.0059	8.2	8.9
	EA-5	0.362	14.6	40.3	0.0051	7.8	8.3
	EC-29	0.363	17.6	48.5	0.0061	7.9	8.9
	GA-6	0.363	17.1	47.1	0.0061	7.7	8.2
	HB-16	0.365	15.7	42.9	0.0056	7.7	8.3
	IC-27	0.364	16.4	45.0	0.0059	7.6	8.2
12000	BB-19	0.363	17.8	0.64	0.0065	7.5	8.2
	CA-2	0.359	19.5	54.3	0.0068	8.0	6.8
	FA-1	0.359	16.3	45.2	0.0058	7.8	9.6
	CA-5	0.361	17.5	7.87	0.0065	7.5	8.3
	4A-6	0.363	19.3	53.0	0.0072	7.4	8.4
	RC-21	0.357	16.0	44.8	0.0059	7.6	8.3
	IA-6	0.364	18.3	50.1	0.0066	7.6	9.6
20000	AA-3	0.365	16.8	46.2	0.0058	8.0	8.6
	BB-14	0.366	16.3	44.7	0.0056	7.9	9.6
	DB-14	0.366	16.4	6.44	0.0058	7.7	8.3
	FA-2	0.364	14.4	39.4	0.0050	7.9	7.8
	FC-29	0.363	18.6	51.3	0.0061	4.6	8.8
40000	AC-26	0.370	17.3	9.94	0.0058	8.0	9.6
	CC-24	0.363	19.8	54.5	0.0068	9 .0	6.8
	CC-27	0.363	17.7	48.7	0.0063	7.8	8.8
	EA-9	0.364	14.9	6.04	0.0049	4.6	æ.
	19-16	0.363	17.5	48.2	0.0061	7.9	8.7

TABLE C17b

24-PLY DAMAGED HOLE COMPRESSION RESIDUAL STRENGTH RESULTS - TASK II (With Fatigue Supports)

No. of		Average		Oross	Apparent Fracture	Secant	Secant
Fatigue Cycles, N Completed	Specinen	Gross Ares, A	Failure PloadKN ult,	Failure Stress of Ma	Strain f, sm/ma in 229 mm	at Eatlure Eaf, CPe	at 30 ksi Es 10 GPa
4000	AB-14	71.6	77.8	328	0.0064	23	53
	AC-29	3 2	73.4	311	0.0057	75	S
	BA-1	32	71.2	303	0.0057	**	65
	DC-22	238	80.1	345	0.0064	24	8
	EC-25	3.78	6.89	296	0.0055	**	6
	FB-19	238	77.0	327	0.0062	53	£
	FC-24	23.5	70.3	299	0.0054	\$. ss
	CA-4	234	74.7	319	0.0060	35	52
	RA-2	234	62.3	265	0.0050	S	57
	BA-7	233	86.7	372	0.0072	\$2	88
9000	AC-24	235	73.8	313	0.0057	55	8 2
	CB-12	233	77.0	330	0.000	SS	5
	DA-S	234	68.5	291	0.0053	35	\$3
	DB-18	233	77.8	334	0.0059	22	9
	EA-5	234	64.9	278	0.0051	45	57
	EC-29	234	78.3	334	0.0061	35	5
	GA-6	234	76.1	325	0.0061	53	52
	HB-16	235	8.69	596	0.0056	53	57
	IC-27	235	73.0	310	0.0059	\$2	57
90	BB-19	234	79.2	338	0.0065	52	57
	C4-2	232	86.7	374	0.0068	55	19
	FA-1	232	72.5	312	0.0058	24	S
	GA-5	233	77.8	334	0.0065	52	57
	HA-6	234	85.9	365	0.0072	51	85
	HC-21	230	71.2	308	0.0059	52	22
	IA-6	235	81.4	345	0.0066	52	29
2000	M-3	235	7.47	319	0.0058	55	26
	BU-14	236	72.5	308	0.0056	54	23
	DB-14	236	73.0	310	0.0058	53	57
	FA-2	235	64.1	272	0.0050	75	85
	FC-29	నే కే	82.7	354	0.0061	28	5
00007	AC-26	239	77.0	323	0.0058	55	ŝ
	CC-24	762	88.1	376	0.0068	55	19
	CC-27	234	78.7	3%	0.0063	*	19
	EA-9	235	66.3	282	0.0049	800	3
	18-16	235	77.8	332	0.0061	35	Ş

TABLE C18a
32-PLY DAMAGED HOLE TENSION RESIDUAL STRENGTH RESULTS - TASK II

Patigue Cycles, N Completed	Specimen ID	Average Gross Area, 2 ^A	Failure Load Fult, kip	Gross Pailure Stress Gult, ksi	Apparent Failure Strain fr in /in. in 9 in.	Modulus At Pallure Eaf	
1,000	JB-16	0.4853	20.6	42.4	0.0097	4.37	
	JC-22	0.4832	20.7	42.8	0.0098	4.37	
	6-43 53	0.4856	21.9	45.0	0.0104	4.33	
	F 18	0.4523	70.0	41.4	0.0091	4.55	
	NC-28	0.4830	21.1	45.5	0.0100	4.33	
	NC-30	0.4840	20.1	4.14	0.000	2.4	
	6-V4	0.4850	20.7	42.7	0.0096	54.4	
	QB-17	0.4870	20.8	42.7	9600.0	4.45	
	RA-2	0.4832	21.1	43.7	0.0094	4.65	
2.000	JA-4	0.4820	20.5	42.5	0.0090	4.72	
	KB-16	0.4812	21.0	43.6	0.0100	4.36	
	KC-28	0.4817	21.4	4.44	0.0000	4.93	
	LA-2	0.4847	20.8	42.8	0.0095	4.51	
	MB-16	0.4842	23.5	48.5	0.0103	4.71	
	NC-22	0.4825	22.8	47.2	0.0100	4.72	
	NC-26	0.4860	4.22.6	0.97	0.0094	68.4	
	I-W)	7,84.0	0.07 a 01	47.5	0.0000	4.72	
	SB-13	0.4816	20.2	42.0	0,0088	4.77	
10.00	KA-7	0.4860	21.4	43 4	7600 0	4.67	
}	LA-7	0.4831	20.8	43.0	0.0088	68.4	
	LC-27	0.4822	20.0	41.6	0.0086	78.7	
	MC-29	0.4679	22.0	47.0	7600.0	8.9	
	PA-1	0.4778	22.2	4,5,4	1600.0	6.4	
	PA-4	0.4786	20.7	43.3	0.0089	4.87	
	QB-12	0.4860	23.3	47.9	0.009	78.7	
	RB-17	0.4820	20.6	42.8	0.0087	4.92	
	SA-S	0.4799	21.1	44.0	0.0088	2.00	
20,000	JB-15	0.4838	21.5	4.44	7600.0	4.72	
	KB-12	0.4868	20.3	41.7	0.0087	4.79	
	1 4-4	0.4824	21.6	6.44	0.003	4.83	
	Z-Y3	0.4857	22.0	45.3	0.0091	96.4	
	E1-13	0.4839	20.9	43.2	0.0092	0.70	
	91 - 67 20 - 67	0.4833	21.5	1.44.	0.0089	8.4	
	NB-17	0.4630	2.1.2	43.5	0.0092	9/:4	
	00-20 00-30 00-30	6.83	30.6		1600.0	9.4	
	SC-23	0.4783	20.7	43.3	0.0089	4.87	
000	10-23	0.4825	21.9	7 57	0.009R	19.4	
	KA-5	0.4852	22.2	60.54	0.009	4.63	
	KB-14	0.4838	21.8	45.2	0.0098	4.61	
	MA-4	0.4814	20.4	42.2	9600.0	4.39	
	NB-14	0.4857	21.9	45.1	0.0094	7 .80	
	PB-12	0.4816	21.8	45.3	8600.0	4.62	
	PB-13	0.4839	20.2	41.7	0.0089	69.4	
	15 -25 26 -37 27 -37	0.4/8/	22.3	1.94	0.000	79.4	
	7	070**	2:17				

TABLE C18b 32-PLY DAMAGED HOLE TENSION RESIDUAL STRENGTH RESULTS - TASK II

No. of Average Average Patitiue						Apparent	Secant	Initial
\$\$\text{96ccfmen}\$\$ \$\$\text{Acc}_{1D}\$\$ \$\$\tex	No. of Fatigue		Average	Fallure	Gross	Failure	Modulus at Pailure	Tangent
JB-15 JG-22 JG-23 JG-24 JG-28 JG-29	Cycles, N Completed	Specimen ID	Area A	Load Pult: KN	Stress Gult, MPa	f. mm/mm in 228.6 um	Esf, GPa	E1.
10-22 10-22 10-22 10-23 10-24 10-3 10-3 10-3 10-3 10-3 10-3 10-3 10-3	1,000	JB-15	313	91.6	292	0.0097	30.1	32.7
KA-9 KA-9 KA-18 KA-18 KA-28 KA-29 KA-29 JA-44 JA-4		JC-22	312	92.1	295	0.0098	30.1	32.8
KA-18 KG-28 KG-29 KG-30 KG-30 KG-30 KG-49 MG-17 MG-16 KG-16 MG-16 MG-16 MG-16 MG-16 MG-16 MG-16 MG-16 MG-17 MG-18 MG-18 MG-18 MG-18 MG-18 MG-18 MG-19 MG		6-4X	313	97.2	310	0.0104	29.8	33.8
MC-3-3 NC-30 NC-30 NC-30 NC-30 NC-20 N		KB-18		0.68	285	0.0091	31.4	9, 6
NG-30 NA-9 NA-9 NA-9 NA-1		ָרְבָּיה בְּיִבְּיה	314	9.59	298	0.0100	29.8	33.8
PA-9 OB-17 AA-2 JA-4 JA-4 JA-4 JA-7 JA-10 J		NC-30	312	4.68	385	0.0102	2.52	33.7
Qu-17 JA-4 JA-4 JA-4 JA-4 KR-2 KG-16 SG-19		6-Va	313	92.1	294	0.0096	30.7	33.1
R4-2 JA-4 KB-16 KG-26 KG-26 JA-7 IA-2 IA-2 IA-2 IA-1 IA-1 IA-2 IA-4 IA-7 IA-8 IA-8 IA-8 IA-8 IA-8 IA-8 IA-9 IA-9 IA-9 IA-9 IA-9 IA-1 IA-		08-17	314	92.5	294	9600.0	30.7	32.8
JA-4 KG-16 KG-28 KG-28 JO-16 KG-28 JO-16 KG-26 JO-16 JO-17 JO-17 JO-17 JO-17 JO-18 JO-19 JO-		RA-2	312	93.9	301	0.004	32.1	34.8
KB-16 KC-28 LA-2 LA-2 NC-26 NC-26 NC-26 NC-26 NC-26 NC-26 NC-26 NC-27 NC-2	2,000	JA-4	311	91.2	293	0.0000	32.5	34.1
KG-28 KG-28 KG-27 KG-37 KG		KB-16	310	93.4	301	0.0100	30.1	33.5
14.4-2 14.4-2 16.4-16 16.4-16 17.4-17 17.4-17 17.4-17 17.4-17 17.4-17 17.4-17 17.4-17 17.4-17 17.4-18		KC-28	311	95.2	306	0.000	34.0	36.7
MAP-18 NG-26 NG-26 NG-27 NG-29 NG-39 NG-29 NG-29 NG-29 NG-29 NG-29 NG-29 NG-30		7-Y1	313	92.5	295	0.0095	31.1	33.3
NG-26 NG-26 NG-26 SB-13 SB		MB-16	312	104.5	334	0.0103	32.5	39.6
0A-1 0A-9 58-13 58-13 113 114-7 114-7 115-27 116-27 117-27 118-17 119-12 119-13 119-13 119-13 119-13 119-14 1		NC-26	116	401.4	117	0.0100	33.7	32.7
Q4-9 SB-13 KA-7 LC-27 NG-29 NG-29 NG-29 NG-29 NG-29 NG-29 NG-29 NG-29 NG-29 NG-10 NG-10 NG-17 NG-17 NG-17 NG-18 NG-1		04-1	315	92.5	293	0-00-0	32.5	35.4
SB-13 SB-13 ILA-7 ILA-7 ILC-27		6-V)	313	88.1	281	0.0088	32.0	33.8
KA-7 LC-27 LC-27 MC-29 MC-		SB-13	311	89.8	290	0.0088	32.9	34.6
LA-7 LLA-7 LLA-7 NG-27 NG-29 NG-29 NG-16 PA-1 PA-1 PA-1 PA-1 PA-1 SA-5 310 GB-12 314 LA-5 JB-18 312 MB-17 MB-16 MB-16 MB-16 MB-17 MB-16 MB-17 MB-17 MB-17 MB-17 MB-18 MB-16 MB-17 MB-17 MB-18 MB-16 MB-17 MB-17 MB-18 MB	10,000	KA-7	314	95.2	303	0.0094	32.2	34.3
LC-2/ NG-2/ NB-16 PA-1 PA-1 PA-1 PA-1 PA-1 SA-5 SA-5 SA-5 SA-5 SA-5 SA-5 SA-5 SA-5		LA-7	312	92.5	296	0.0088	33.7	35.7
NB-16 PA-1 PA-1 PA-1 PA-1 PA-1 PA-1 PA-1 SA-5 JB-15 JB-15 JB-16 JB-13 JB-14 JC-24 JC		MC-29	302	97.6	76K	0.0086	35.4 5.4	36.1
PA-1 PA-4 QB-12 QB-12 JB-15 JB-15 JB-12 JB-12 JB-12 JB-13 JB-13 JB-13 JC-24 JC-24 JC-24 JC-23 JC-23 JC-23 JC-23 JC-23 JC-23 JC-24 JC-24 JC-24 JC-24 JC-24 JC-24 JC-23 JC-2		NB-16	314	8.46	301	0,0091	33.1	35.4
QR-4 QR-4 RB-17 SA-5 JB-18 JB-18 JR-12 JR-13 JR-13 QC-30 QC-30 QC-30 QC-30 AG-14 RC-4 BC-24 BC-24 BC-24 BC-24 BC-24 BC-24 BC-23 BC-24 BC-30 BC-3		PA-1	308	98.8	321	0.0095	33.8	34.3
Name of the control o		PA-4	309	92.1	298	0.0089	33.6	M
SA-5 JB-15 LA-4 LA-4 LA-5 JB-13 JB-13 JB-13 JB-13 JB-13 JB-13 JB-13 JB-13 JB-13 JB-13 JB-13 JB-13 JB-13 JB-13 JB-14		QB-12	311	91.6	330	6,00,0	33.4	3.7.
JB-15 LA-4 LA-4 LA-5 314 LA-6 110 LA-6 314 LA-7 LA-7 315 HB-18 NB-17 312 QC-31 312 RA-5 311 RA-6 NB-14 NB-14 NB-14 SB-12 311 RA-7 SC-23 311 SB-14 SB-12 SB-12 SB-12 SB-13 SB-14 SB-1		SA-5	310	93.9	303	0.0088	34.5	37.0
KB-12 LA-4 LA-5 113 MB-13 MB-18 MB-17 MB-17 MB-17 MB-17 MB-17 MB-17 MB-17 MB-17 MB-14 MB-14 MB-14 MB-14 MB-14 MB-14 MB-14 MB-14 MB-14 MB-14 MB-14 MB-14 MB-14 MB-16 MB-16 MB-17 MB-16 MB-17 MB-18	20.000	JB-15	312	95.6	306	7600.0	32.5	35.6
14-4 311 14-5 312 14-5 313 14-5 313 312	•	KB-12	314	90.3	288	0.0087	33.0	36.8
1.6-5 1.6-13 1.6-13 1.6-13 1.6-23 1.6-24 1.6-24 1.6-24 1.6-24 1.6-24 1.6-24 1.6-24 1.6-24 1.6-24 1.6-24 1.6-14		4-4	311	96.1	310	0.0093	33.3	35.7
HP-15 HP-15 NB-17 QC-30 QC-36 313 AC-24 312 AC-23 AN-4 NB-14 NB-14 PB-12 PB-13 QC-31 AN-5 AN-6 313 AN-6 313 AN-6 313 AN-6 313 AN-6 313 AN-6 313 AN-6 313 AN-6 313 AN-7 AN-7 AN-7 AN-8		~ ? • • • • • • • • • • • • • • • • • • •	313	97.9	312	0.0091	34.3	35.5
NG-17 QC-30 QC-30 RC-24 312 RC-24 312 KA-5 WB-14 NB-14 9B-12 PB-13 QC-31 313 AA-5 313 AA-5 313 313 313 314 AA-5		MR-13	216 216	0.06	8 67	0.0092	37.4	34.7
QC-30 RC-24 SC-24 JC-23 JC-23 JC-23 JR KA-5 JR KA-5 JR HA-4 JR HA-4 JR HB-14 PB-12 PB-13 QC-31 RA-5 JR HA-4 JR		NB-17	313	94.3	305	0.0092	32.8	33.8
NG-24 NG-23 JG-23 JG-23 JG-23 NA-4 NB-14 NB-14 JJJ PB-12 JJJ PB-13 GC-31 SA-5 JJJ JJJ JJJ JJJ JJJ JJJ JJJ J		QC-30	312	94.3	301	0.0091	33.1	34.7
JC-23 JC-23 JC-23 JL-14 JB-14 JB-14 PB-12 PB-13 QC-31 AA-5		RC-24	312	93.0	298	0.0092	32.4	34.0
JG-23 JG-23 KB-14 NA-4 JJJ PB-14 JJJ PB-13 GC-31 GC-31 JG-31 JG-31 JG-31 JG-31 JG-31 JG-31 JG-31	;		i i		067	69000	ם: יו	
312 311 311 309 311	2 8 ,000	JC-23	311	97.4	313	9600.0	31.9	34.1
311 313 311 309 309 111		- 1-L	312	97.0	312	600.0	31.8	33.6
313 311 309 309 311		HA-4	311	90.7	291	0.00	30.3	32.5
311 309 311		NB-14	313	97.4	311	0.0094	33.1	37.4
312 309 311 310		PB-12	311	97.0	312	0.008	31.8	33.5
318		76-13 0C-31	317	103.6	987	0.0089	32.3	93.9 2.5
		R4-5	311	93.4	299	0.0089	33.6	35.7
910		SB-18	310	97.0	313	0.0097	32.3	34.1

TABLE C19a

32-PLY DAMAGED HOLE COMPRESSION RESIDUAL STRENGTH RESULTS - TASK II

Patigue Conjuleted 1,000	Specimen 19 13 19-13 10-13 10-28 10-28 10-3 10-3 10-3 10-3 10-15 10-	Area, A 1n. 2 1n. 2 0.4854 0.4854 0.4831 0.4831 0.4831 0.4841 0.4841 0.4856 0.4856 0.4854 0.4854 0.4854	Patlure Load Pult: kip	Failure Stress	Strain f, in./in.	Egf,	at 20 ks1 Es20
And the state of t	Speciment 19 19 19 19 19 19 19 19 19 19 19 19 19	Area, A In. 2 0.4854 0.4868 0.4831 0.4831 0.4831 0.4841 0.4841 0.4841 0.4858 0.4858 0.4854 0.4854 0.4854	Load Pult kip	Stress	f, in./in.	Est,	E 20
3,000	JB-13 MC-27 MC-27 MC-28 MC-28 MC-28 SA-7 SB-19 JA-5 MC-26 MA-6 MA-6 MA-2 PB-15 PC-25 QC-28	0.4854 0.4868 0.4860 0.4831 0.4831 0.4831 0.4841 0.4841 0.4856 0.4841 0.4872	12		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	- A T T T T T T T T T T T T T T T T T T	Day 4 ved
00	MC-27 MC-28 MC-28 MA-8 MA-5 SA-7 SB-19 JA-5 MA-6 MA-2 PB-15 PC-25 QC-28	0.4868 0.4860 0.4831 0.4832 0.4831 0.4841 0.4841 0.4826 0.4841 0.4872 0.4872	7.77	35.2	0600.0	3.91	4,65
9,000	MA-8 MA-1 MA-1 PA-3 SA-7 SB-19 SB-19 JA-5 KC-24 KC-24 MA-6 MA-2 PC-25 QC-28	0.4860 0.4831 0.4832 0.4831 0.4841 0.4841 0.4856 0.4841 0.4872	16.7	34.2	0.0081	4.22	4.76
3°00	MC-28 PA-3 PA-3 QA-6 QA-6 QA-6 JA-5 JA-5 MC-24 MA-6 PB-15 PC-25 QC-28	0.4831 0.4832 0.4831 0.4841 0.4826 0.4826 0.4841 0.4841	15.2	31.3	0.0069	4.54	88.7
8	MA-4 QA-3 QA-6 SA-7 SB-19 JA-5 IZ-24 IZ-16 MA-2 PR-15 PC-25 QC-28	0.4832 0.4831 0.4841 0.4826 0.4826 0.4841 0.4842	15.8	32.7	0.0083	3.94	2.00
000	PA-3 SA-6 SA-6 SB-19 JA-5 ILB-16 MA-6 MA-2 PP-15 PC-25 QC-28	0.4831 0.4841 0.4781 0.4826 0.4858 0.4874 0.4872	15.2	31.5	0.0070	4.50	4.76
000'	9A-6 SB-19 JA-5 KC-2A KC-2A MA-6 MA-2 PC-25 QC-28	0.4841 0.4826 0.4826 0.4841 0.4841 0.4854	17.3	35.8	0.0092	3.89	4.65
900°	SA-7 JA-5 KC-24 HB-16 MA-6 NA-6 PB-15 PC-25 QC-28	0.4781 0.4826 0.4858 0.4841 0.4872 0.4854	15.0	31.0	0.0069	67.7	88.7
000*	SB-19 JA-5 KC-24 KC-24 NA-6 NA-2 PB-15 PC-25 QC-28	0.4826 0.4858 0.4841 0.4872 0.4854	14.5	30.3	0.0068	97.7	4.76
000 *	JA-5 KC-24 LB-16 HA-6 NA-2 PB-15 PC-25 QC-28	0.4858 0.4841 0.4872 0.4854	16.0	33.2	0.0074	67.4	88.4
	KC-24 LB-16 HA-6 NA-2 PB-15 PC-25 QC-28	0.4841 0.4872 0.4854	14.3	29.3	0.0066	79.7	4.65
	LB-16 MA-6 NA-2 PB-15 PC-25 QC-28	0.4872	16.0	33.1	0.0074	4.47	88.4
	MA-6 NA-2 PB-15 PC-25 QC-28	0.4854	16.3	33.4	0.0074	4.51	88.7
	NA-2 PB-15 PC-25 QC-28		15.5	31.9	0.0071	67.4	88.7
	PB-15 PC-25 QC-28	0.4834	15.3	31.5	0.0070	4.50	4.76
	PC-25 QC-28	0.4833	18.0	37.2	0.0088	4.23	4.76
	QC-28	0.4823	15.8	32.7	0.0076	4.30	4.65
		0.4838	15.5	32.0	0.0372	4.44	4.65
	RB-2 0	0.4721	17.5	37.1	0.0082	4.52	88.7
	RC-27	0.4797	16.0	33.4	0.0073	4.58	2.00
10,000	JC-27	0.4855	•	•	•	•	•
	JC-28	0.4849	14.3	29.5	0.0068	4.32	4.58
	KC-22	0.4817	14.9	8.9°	0.0068	4.56	4.87
	10-23	0.4821	13.7	28.3	0.0063	4.49	4.65
	MC-25	0.4847	10.6	34.2	0.0080	4.26	
	PC-27	0.4811			0.004	4.30	24.4
	0C-23	0.4844	5.9	34.0	0.0076	05.4	7 8 7
	SA-1	0.4817		32.1	0.0071	0 · 4	6 4
	SB-11	0.4730	14.5	30.7	6900.0	4.42	06.7
30 000	11-11	2087 0	1 71	20.3	0 0063	37 7	2
	1.01	0.4714	15.0	13.7	0.0063	60.4	20.7
		0.4750	17.2	36.1	0.0072	50.5	5.26
	9-4X	0.4849	14.9	30.6	0.067	4.57	900
	PB-17	0.4840	16.4	33.9	0.0070	79.4	88.4
	08-13	0.4862	14.7	30.2	0.0068	4.44	88.4
	QC-22	0.4844	13.8	28.5	0.0063	4.52	88.4
	RA-7	0.4829	13.6	28.2	0.0064	19.4	4.88
	RC-22	0.4841	14.0	28.8	0.0062	4.65	88.4
	77-76	7//5.0	5.5	37.4	0.0070	4.63	2.00
28,000	JB-18	0.4836	14.3	29.5	9900.0	4.47	4.65
	KB-17	0.4828	15.5	32.1	0.0076	4.22	4.65
	61-13	0.4815	16.7	34.7	0.0075	4.63	6.93
	FC-58	0.4841	16.9	e. 46	0.0083	4.20	4.67
		9796.0	18.7	. 6	0.00%	4.05	9.
	07-10 DA-7	0.4839	15.0	33.5	0.0036	3,74	20.4
	RC-25	0.4826	15.0	31.2	0.0070	4.46	4.76
	RC-31	0.4756	17.0	35.7	0.0078	4.58	4.88
	SR-17	0.4794	13.5	28.2	0.0064	4.40	4.76

a - Failed on loading due to operator error

TABLE C19b
32-PLY DAMAGED HOLE COMPRESSION RESIDUAL STRENGTH RESULTS - TASK II

Completed 1,000 5,000 10,000	Speciaen ID ID ID ID ID ID ID ID ID I	Area A A 313 312 313 312 312 312 312 313 313 313	Pult - KN 76.0 77.0 64.5 77.0 66.7 77.0 66.7 77.0 66.7 77.0 66.7 77.0 66.7 77.0 66.7 77.0 66.1 77.2 77.2 57.0 68.1 80.1 70.3	Stress Q ₁₁ t. MPs 243 236 216 225 217 247 247 224 209 229 229 220 220 220 220 220 220 220	f f mm/am in 228.6 mm in 228.6	27.0 29.1 29.1 31.0 30.8 30.8 31.0 31.0 31.0 31.0 31.0 31.0	22.1 23.13 23.13 23.16 2
	10 19–13 19–13 19–13 10–28 10–26 10–27	313 314 312 312 312 313 313 314 313		243 243 243 216 216 217 224 202 229 229 220 220 220 220 220 220 220	10 228.6 mm 0.0090 0.0081 0.0083 0.0083 0.0070 0.0066 0.0066 0.0074 0.0074 0.0071 0.0070 0.0078	27.0 27.0 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1	92.1 32.1 32.1 32.8 33.6 33.6 33.6 33.6 33.6
	JB-13 MC-27 MC-27 MC-28 MC-28 PA-3 PA-3 PA-3 SB-19 SB-19 MA-6 MA-6 MA-6 MA-6 MA-6 MA-2 MA-6 MA-2 MA-2 MA-2 MA-7 MA-15 MA-15 MA-12 MA-13 MA-13 MA-13 MA-13 MA-14 MA	313 314 312 312 313 314 313 314 313 314 315	76.0 67.3 70.5 67.6 66.7 71.2 72.3 68.1 86.1	243 216 216 225 229 229 220 220 220 220 221 225 221 225	0.0090 0.0081 0.0083 0.0073 0.0073 0.0069 0.0068 0.0074 0.0074 0.0071 0.0070 0.0070	22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	32.33.33.33.33.33.33.33.33.33.33.33.33.3
	KC-27 WA-8 WA-48 WA-4 PA-3 PA-3 PA-3 SB-19 SB-19 SB-19 WA-6 WA-6 WA-6 WA-2 PB-15 PC-25 RC-25	314 312 312 313 314 313 313 314 315 315 315 315 315 315 315 315 315 315	74.7 70.7 70.5 70.5 71.2 71.2 72.2 70.3 70.3 70.3 70.3 70.3 70.3 70.3 70.3	236 2216 2217 2217 229 229 220 220 221 221 221 221 221 221 221	0.0081 0.0069 0.0069 0.0070 0.0074 0.0074 0.0074 0.0070 0.0070 0.0070	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	33.35.1.28.55.28.37.3.37.37.37.37.37.37.37.37.37.37.37.3
	MA-8 NC-28 NA-4 PA-3 CQA-6 CQA-6 SA-7 SA-7 SA-7 SA-5 NA-6 PB-15 PB-15 PB-15 RR-20	314 312 312 313 313 313 313 313	67.6 67.6 77.0 77.5 71.2 69.0 70.1 868.1 868.1	216 217 217 217 208 209 209 200 210 210 211 211 211 211 211 211 211	0.0069 0.0083 0.0083 0.0092 0.0068 0.0074 0.0074 0.0074 0.0078 0.0076 0.0076	11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33.28.28.28.28.28.28.28.28.28.28.28.28.28.
	MG-28 NA-4 NA-3 QA-6 SB-7 SB-19 SB-19 SB-15 CB-16 PB-15 PB-15 PB-15 RB-20	312 312 312 313 314 313 313	70:3 77:6 77:6 71:2 71:2 69:0 70:1	225 244 244 209 209 200 200 200 200 200 200 200 200	0.0083 0.0070 0.0070 0.0068 0.0074 0.0074 0.0071 0.0070 0.0070 0.0070	22.2 20.0 20.0 20.0 20.0 20.0 20.0 20.0	3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.56
	PA-4 PA-3 SA-7 SA-7 SB-19 SB-19 LA-5 LB-16 INA-6 PB-2 PB-2 PR-2 RR-20	312 312 313 314 313 314 313	67.6 66.7.6 63.6 72.2 72.2 72.3 70.1	217 214 226 229 230 230 231 225 221 230 230 230 230 230 230 230 230 230 230	0.0070 0.0092 0.0068 0.0068 0.0074 0.0074 0.0071 0.0070 0.0088 0.0076	23.00 11.00	32.8 33.1.8 33.8 33.6 33.6 33.6
	FA-3 FA-3 GA-6 SA-7 SB-19 SB-19 TC-24 TC-24 TR-2 FC-25 TR-20 TR-20 TR-20 TR-20	312 312 313 314 312 313	64.7.0 64.7.7.2 71.2 72.2 72.5 70.3 86.1	2.44 2.09 2.09 2.02 2.20 2.20 2.25 2.21 2.25 2.20 2.20 2.20 2.20 2.20 2.20 2.20	0.0092 0.0069 0.0068 0.0074 0.0074 0.0070 0.0088 0.0072 0.0072	15.8 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11	32.1 32.8 32.8 32.8 33.6 33.6
	0.00	312 311 312 314 313	6,65.7 71.2 63.6 72.2 72.2 69.1 70.1	204 209 202 202 202 203 203 203 203 203 203	0.0069 0.0068 0.0074 0.0074 0.0074 0.0070 0.0088 0.0076	11.00 11.00	33.6 32.1 32.1 33.6 33.6
	SB-7 SB-19 SB-19 JA-5 LB-16 LB-16 PB-15 PC-25 RR-20	308 313 312 314 313	64.5 71.2 72.5 72.5 70.1 70.1	209 209 202 220 220 221 221 221 230	0.0068 0.0074 0.0074 0.0074 0.0071 0.0070 0.0076 0.0076	30.08 31.08 31.00 39.56 39.66 31.00 31.00 31.00	32.8 33.6 33.6 33.6 33.6
	SB-19 MA-5 MA-6 MA-6 MA-2 PB-2 PC-28 RR-20 RR-20	313 312 314 313 313	71.2 63.6 72.5 72.5 68.1 70.1	229 202 228 220 220 225 225 221 236	0.0074 0.0066 0.0074 0.0071 0.0070 0.0076 0.0072	31.0 30.6 31.0 31.0 29.2 30.6 30.6	33.6 33.6 33.6 33.6
	JA-5 KC-24 KB-16 KB-6 NA-6 PB-15 PB-15 RC-28 RB-20	313 314 313 313	63.6 72.5 72.5 69.0 68.1 70.3	202 228 228 230 217 256 225 221 221	0.0066 0.6074 0.0074 0.0070 0.0088 0.0076 0.0072	30.6 31.1 39.6 39.6 30.6 31.2	32.1 33.6 33.6
	KC-24 LB-16 NA-6 NA-2 PB-15 PC-25 QC-28 RB-20	312 312 312 313	71.2 72.5 69.0 68.1 80.1	228 230 230 217 226 221 256	0.0074 0.0074 0.0071 0.0070 0.0088 0.0076 0.0072	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	33.6
	LB-16 MA-6 NA-2 PC-15 QC-28 RB-20 RC-27	314 313 312	72.5 69.0 68.1 80.1	230 220 237 228 221 221 256	0.0074 0.0071 0.0070 0.0088 0.0076 0.0072	31.1. 23.2.0.0.1.2 30.6.3.0.0.1.2	33.6
	MA-6 NA-2 PB-15 PC-25 QC-28 RB-20 RC-27	313	69.0 68.1 80.1	220 217 225 221 221 236	0.0071 0.0070 0.0088 0.0076 0.0072	31.0 29.2 30.6 30.6	33.6
	NA-2 PB-15 PC-25 QC-28 RB-20 RC-27	312	68.1 80.1	217 256 225 221 236	0.0070 0.0088 0.0076 0.0072 0.0082	31.5 29.2 30.6 31.2	
	PB-15 PC-25 QC-28 RB-20 RC-27		80.1	255 225 221 256 256	0.0088 0.0076 0.0072 0.0082	29.6 29.6 30.6 31.2	3.5
	PC-25 QC-28 RB-20 RC-27	313	20.3	225 225 226 236	0.0076 0.0072 0.0082	29.6 30.6 31.2	9.50
	QC-28 QC-28 RB-20 RC-27	1		221 256 236	0.0072	30.6 31.2	22.0
	RB-20 RC-27	312	0.69	256	0.0082	31.2	1.72
	RC-27	305	77.8	230	7000	***	33.5
		310	71.2	27	0.0073	31.6	34.5
	10-27	113	•	ļ '	<u>'</u>		} '
	10-28	313	7 63	000	9000		, ,
	IC-22		9.99	213	0.006	31.4	33.6
	10-23	: =	6.09	195	0.0063	3.1.5	33.0
	MC-25	313	73.8	236	0.000	29.4	33.1
	NB-13	312	78.7	252	0.0084	30.1	33.1
_	PC-27	312	71.2	228	0.0076	30.1	32.1
	0C-23	312	73.4	234	0.0076	31.0	33.6
	SA-3	311	0.69	221	0.0071	31.4	33.6
	SB-11	302	64.5	212	0.0069	30.5	33.8
20,000	JB-11	310	62.7	202	0.0063	32.1	34.5
	rc-31	304	70.7	232	0.0074	31.4	33.6
	MB-11	3 2	76.5	249	0.0072	34.5	36.3
	NA-6	313	66.3	211	0.0067	31.5	33.6
	PB-17	312	73.0	234	0.0070	32.0	33.6
	QB-13	314	65.4	208	0.0068	30.6	33.6
	QC-22	312	61.4	196	0.0063	31.2	33.6
	RA-7	312	60.5	194	0.0064	30.4	33.6
	KC-22	312	6.23	661	0.0062	32.1	33.6
	20-7/	306	60.9	577	0.00/0	31.9	34.5
28,000	JB-16	312	63.6	203	9900.0	30.8	32.1
	KB-17	311	0.69	221	0.0076	29.1	32.1
	LB-19	311	74.3	239	0.0075	31.9	34.0
	TC-26	312	75.2	241	0.0083	29.0	32.2
	76-15 50	317	63.2	/97	0.0096	27.9	33.3
	NB-18	213	. 66.7	213	0.0068	31.3	33.6
	FA-/	317	7.17	977	0.0070		32.1
	BC-21	30.5	. 5	246	0.0070	31.6	32.0
	SB-17	Š	0.09	194	0.0064	30.3	32.8

APPENDIX D

Damage Growth Characteristics
Under Fatigue Loading

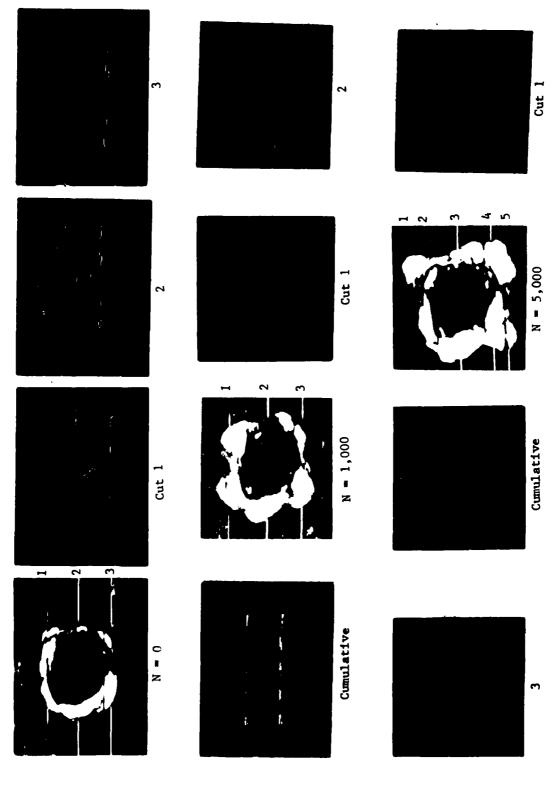
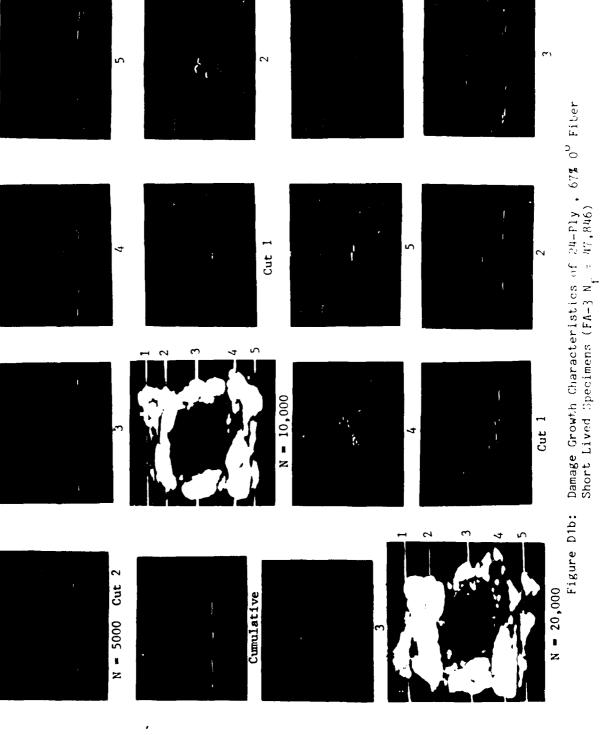



Figure Dia: Damage Growth Characteristics of 24-Ply , 67% $0^{\rm O}$ Fiber Short Lived Specimens (FA-3 ${
m N_f}$ = 47,846)

D3

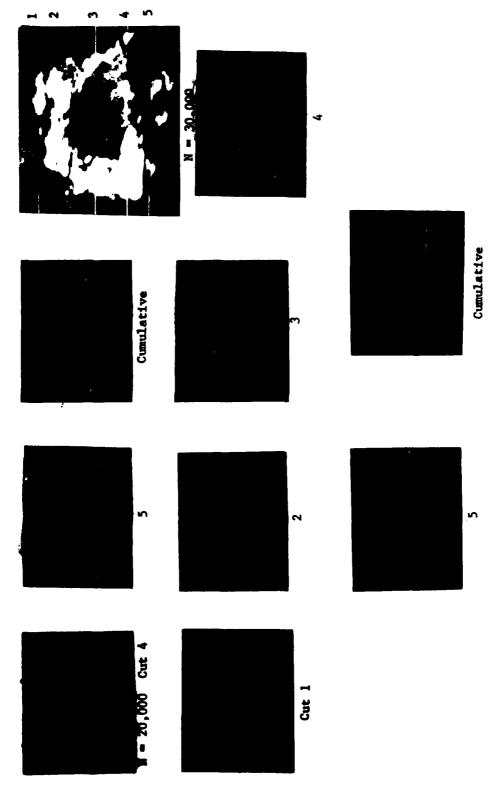


Figure Dic: Damage Growth Characteristics of 24-Ply , 67% $0^{\rm O}$ Fiber Short Lived Specimens (FA-3 N $_{\rm f}$ = 47,846)

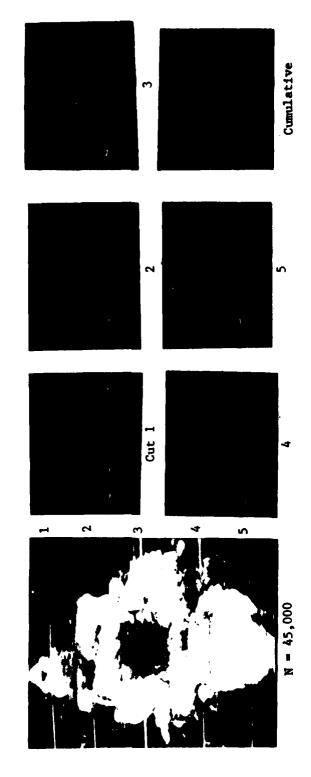


Figure D1d: Damage Growth Characteristics of 24-Ply , 67% $0^{\rm O}$ Fiber Short Lived Specimens (FA-3 N $_{\rm f}$ = 47,846)

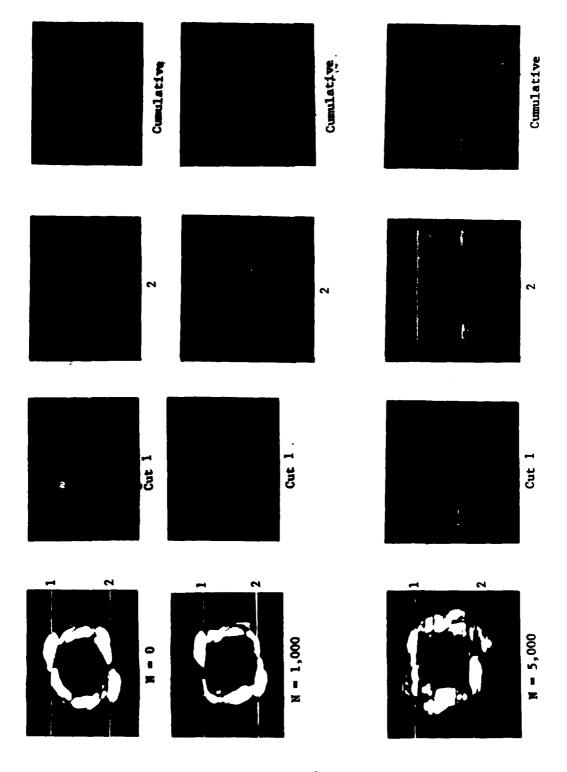


Figure D2a: Damage Growth Characteristics of 24-Ply , 67% $0^{\rm O}$ Fiber Long Lived Specimens (HC-26 N $_{\rm f}$ = 448,633)

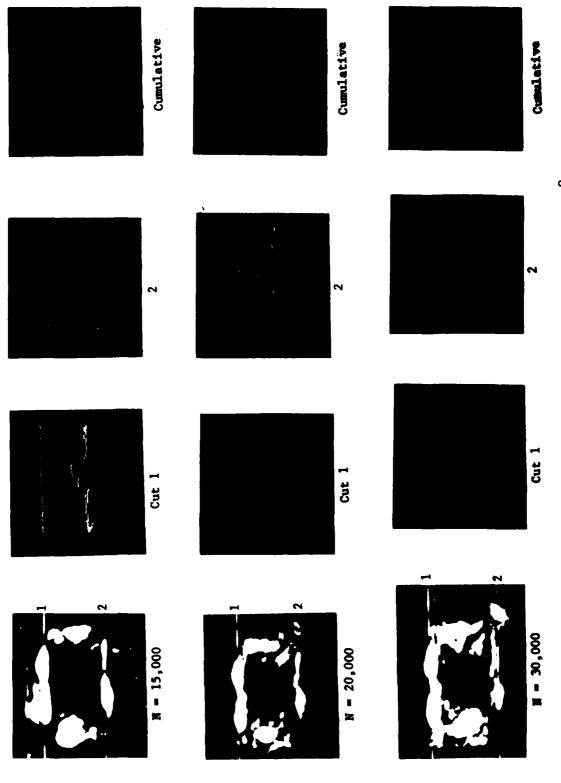


Figure D2b: Damage Growth Characteristics of 24-Ply , 67% $0^{\rm O}$ Fiber Long Lived Specimens (HC-26 N $_{\rm f}$ = 448,633)

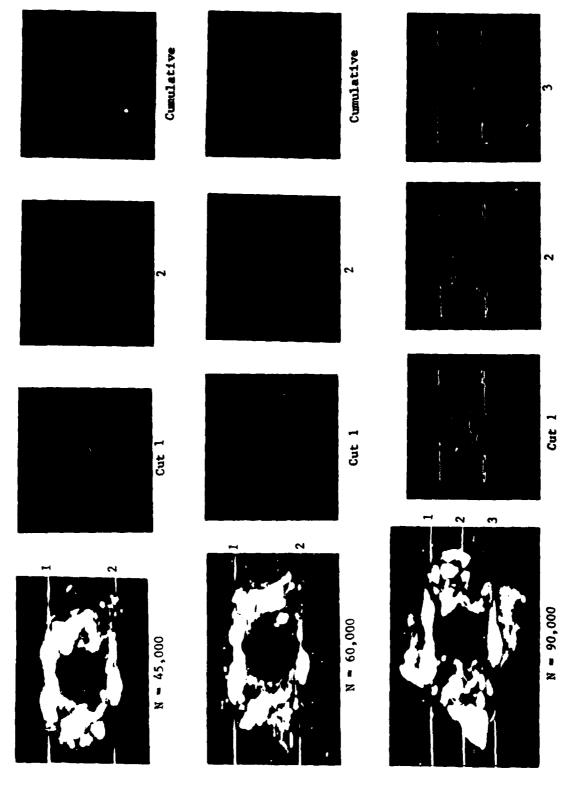


Figure D2c: Damage Growth Characteristics of 24-Ply , 67% $0^{\rm O}$ Fiber Long Lived Specimens (HC-26 N $_{\rm f}$ = 448,633)

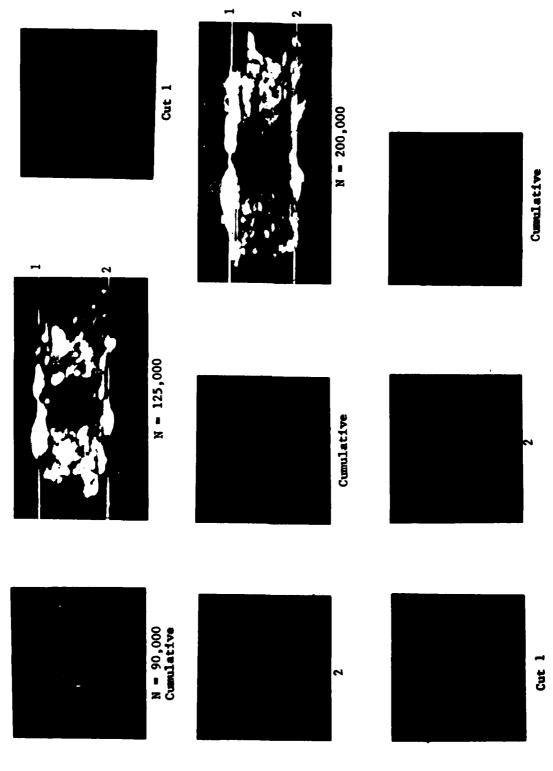


Figure D2d: Damage Growth Characteristics of 24-Ply , 67% 0 Fiber Long Lived Specimens (HC-26 N $_{\rm f}$ = 448,633)

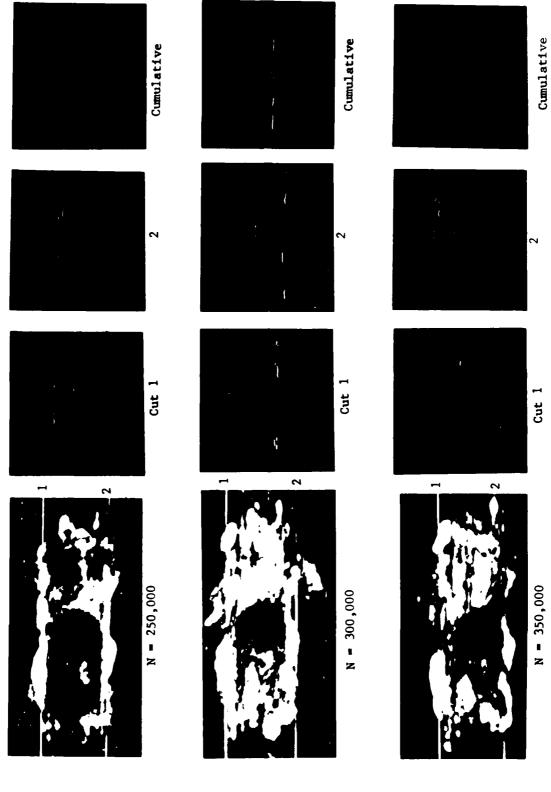


Figure D2e: Damage Growth Characteristics of 24-Ply , 67% $0^{\rm O}$ Fiber Long Lived Specimens (HC-26 $\rm N_f$ = 448,633)

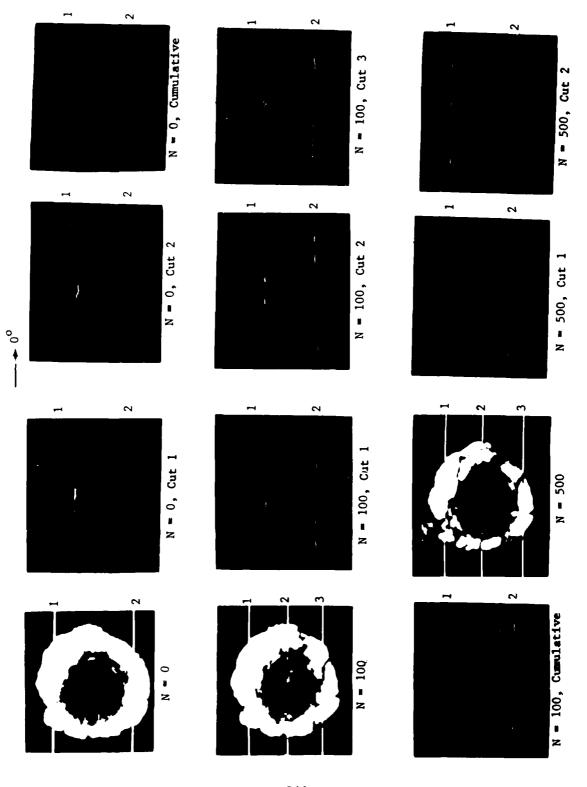


Figure D3a: Damage Growth Characteristics of 32-Ply Quasi-Isotropic Short Lived Specimens (MB-17, N $_{\rm f}$ = 27,673)

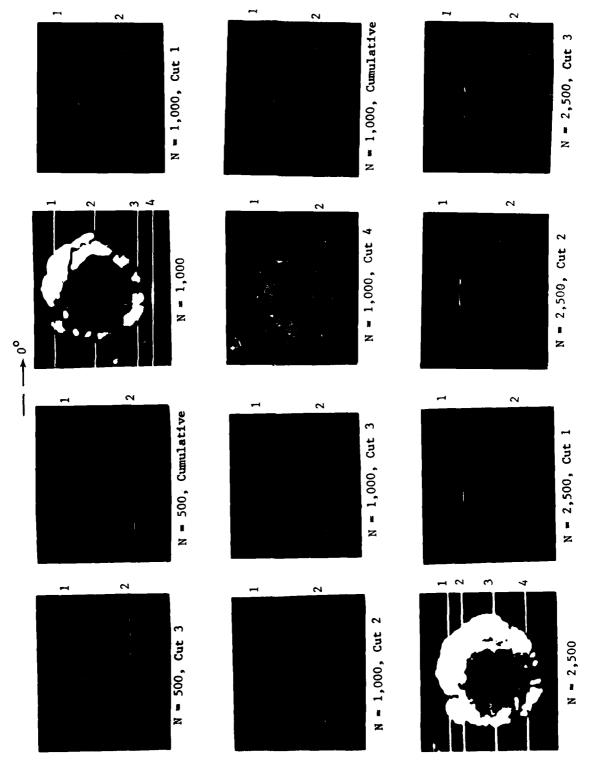


Figure D3b: Damage Growth Characteristics of 32-Ply Quasi-Isotropic Short Lived Specimens (MB-17, $N_{\rm f}$ = 27,673)

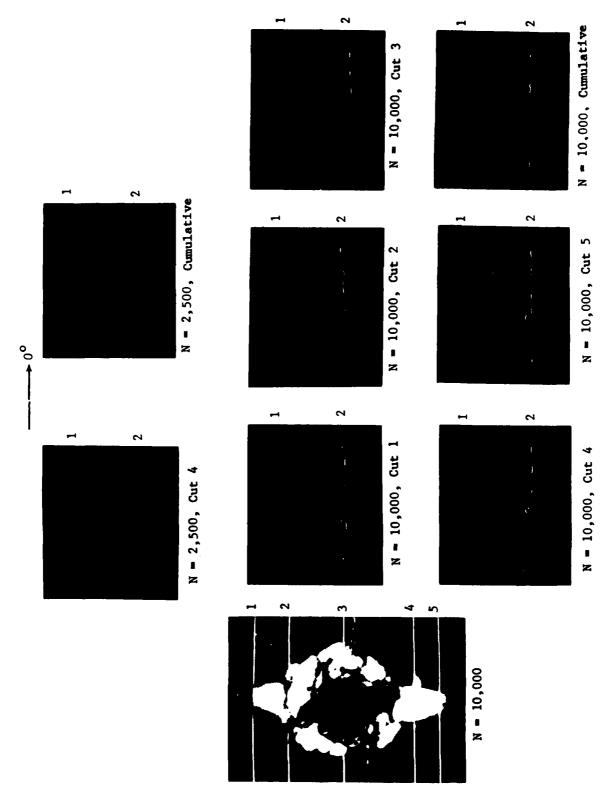


Figure D3c: Damage Growth Characteristics of 32-Ply Quasi-Isotropic Short Lived Specimens (MB-17, $N_{\rm f}$ = 27,673)

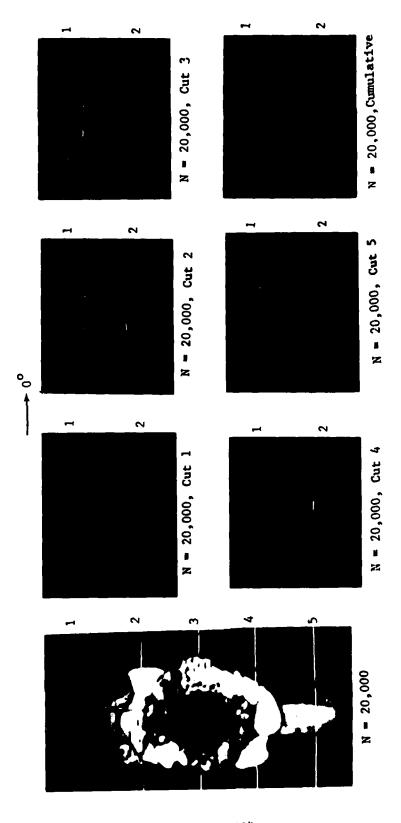


Figure 3Dd: Demage Growth Characteristics of 32-Ply Quasi-Isotropic Short Lived Specimens (MB-17, $N_{\rm f}$ = 27,673)

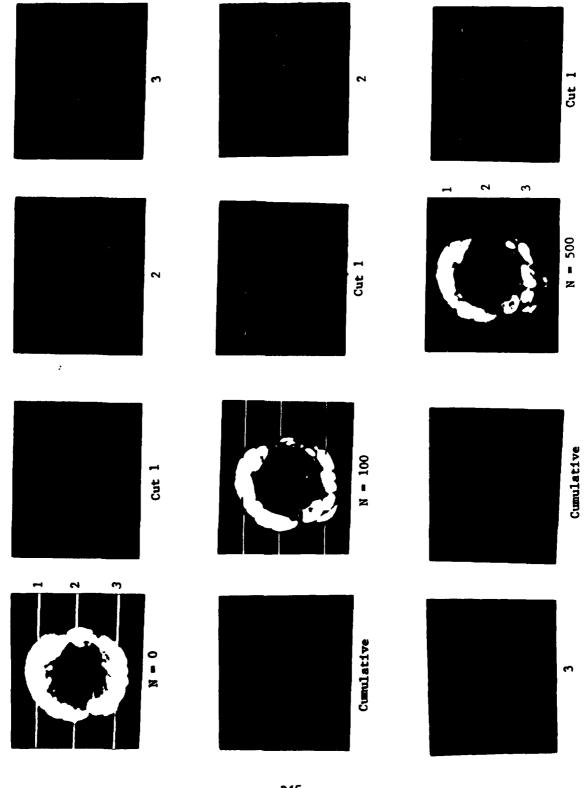


Figure D4a: Damage Growth Characteristics of 32-Ply, Quasi-Isotropic Long Lived Specimens (LC-30 $\rm N_f=188,907)$

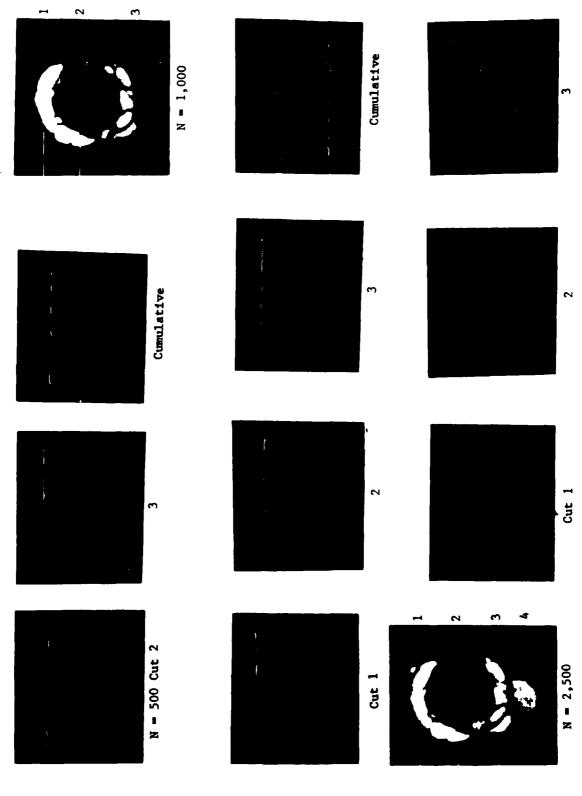


Figure D4b: Damage Growth Characteristics of 32-Ply, Quasi-Isotropic Long Lived Specimens (LC-30 N $_{\rm f}$ = 188,907)

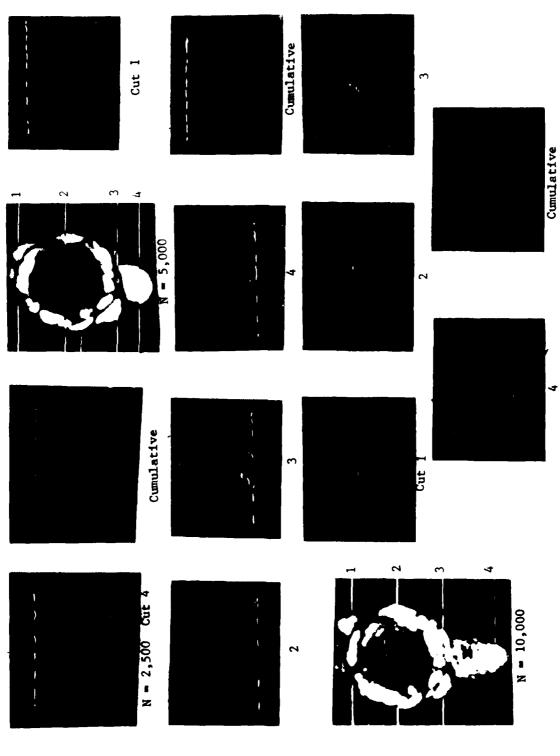


Figure D4c: Damage Growth Characteristics of 32-Ply, Quasi-Isotropic Long Lived Specimens (LC-30 N $_{\rm f}$ = 188,907)

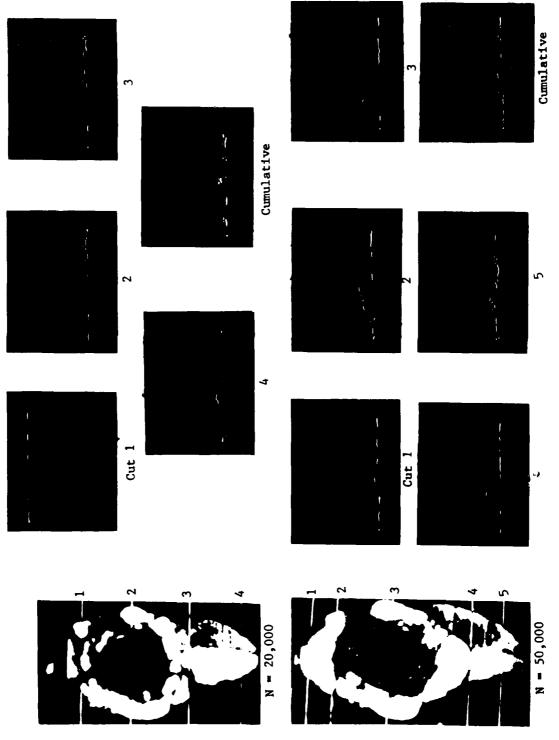


Figure D4d: Damage Growth Characteristics of 32-Ply, Quasi-Isotropic Long Lived Specimens (LC-30 $\rm N_f=188,907)$

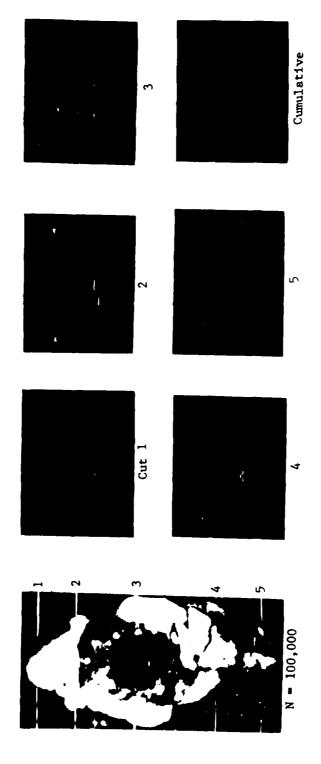


Figure D4e: Damage Growth Characteristics of 32-Ply, Quasi-Isotropic Long Lived Specimens (LC-30 N $_{f}$ = 188,907)

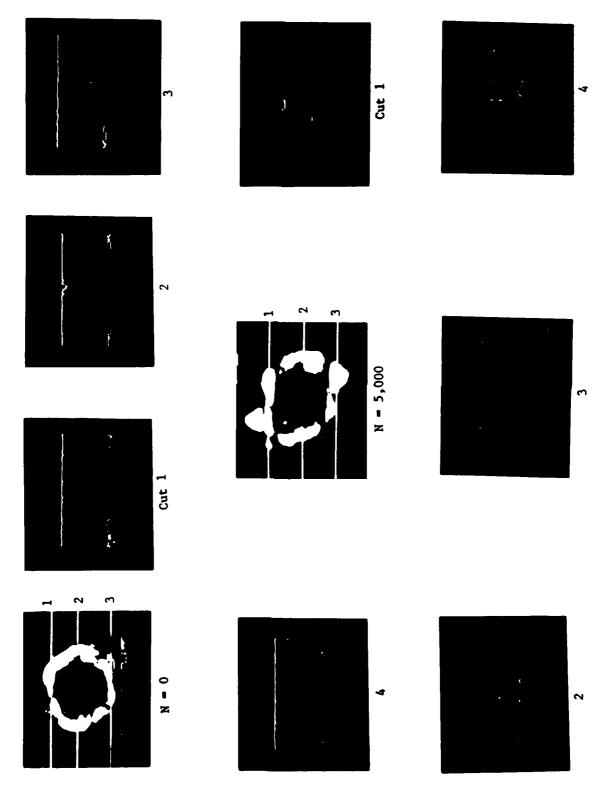
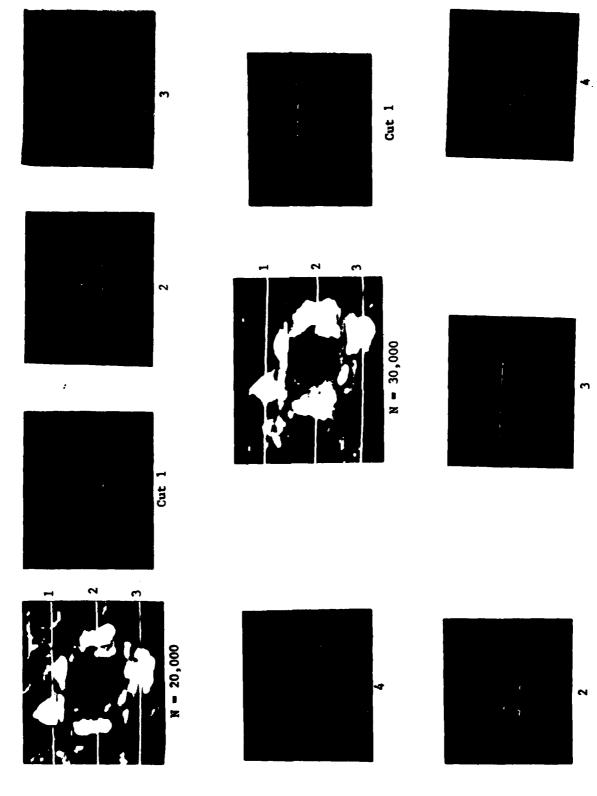



Figure D5a: Damage Growth Characteristics of the 24-Ply Laminate for Fatigue Condition A, 4-Bar Support (CA-6, $N_{
m f}$ = 569,499)

e de la companya del companya del companya de la companya del la companya de la c

Figure D5b: Damage Growth Characteristics of the 24-Ply Laminate for Fatigue Condition A, 4-Bar Support (CA-6, N $_{\rm f}$ = 569,499)

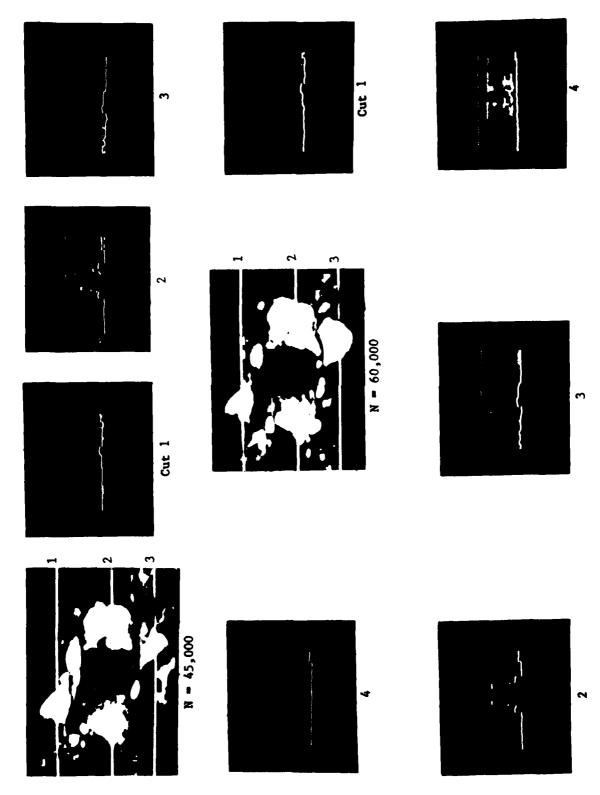
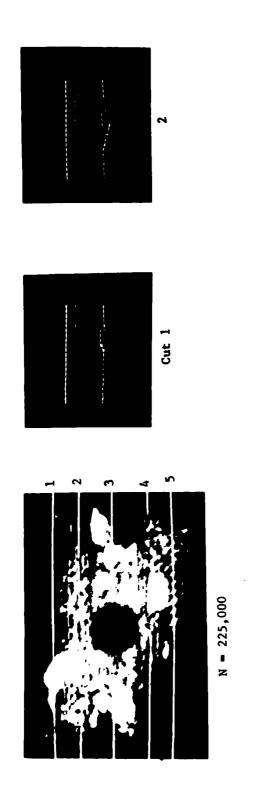
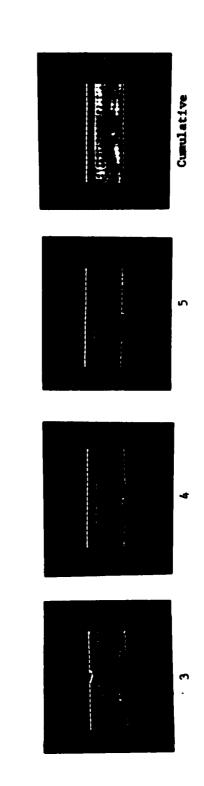




Figure D5c: Damage Growth Characteristics of the 24-Ply Laminate for Fatigue Condition A, 4-Bar Support (CA-6, N $_{\rm f}$ = 569,499)

Figure D5d: Damage Growth Characteristics of the 24-Ply Laminate for Fatigue Condition A, 4-Bar Support (CA-6, $N_{f}=569,499$)

Damage Growth Characteristics of the 24-Ply Laminate for Fatigue Condition A, 4-Bar Support (CA-6, $N_{
m f}$ = 569,499) Figure D5e:

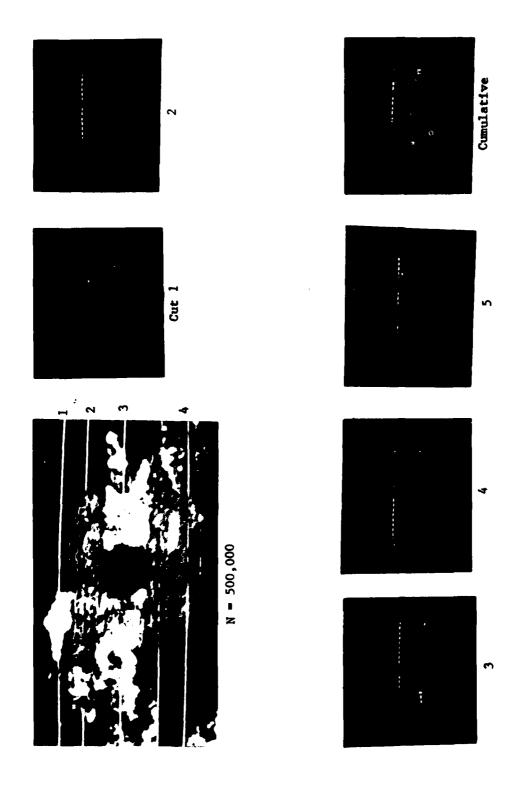
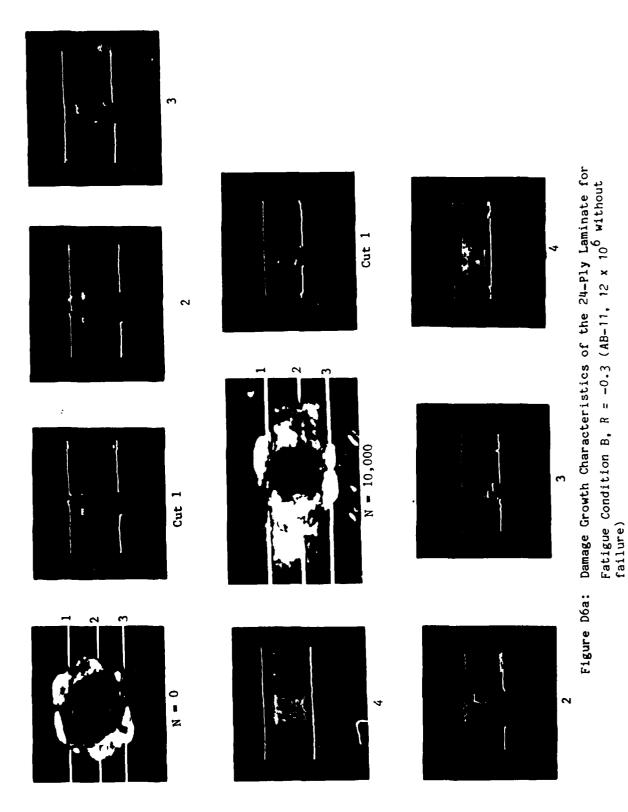
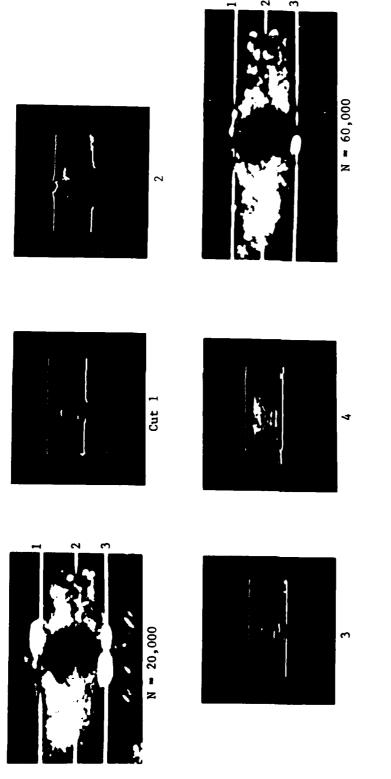
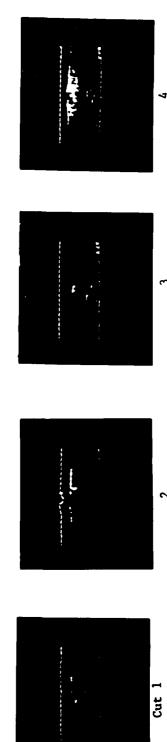





Figure D5f: Damage Growth Characteristics of the 24-Ply Laminate for Fatigue Condition A, 4-Bar Support (CA-6, N $_{
m f}$ = 569,499)

D26

Damage Growth Characteristics of the 2^{μ} -Ply Laminate for Fatigue Condition B, R = -0.3 (AB-11, 12 x 10^{6} without failure) Figure D6b:

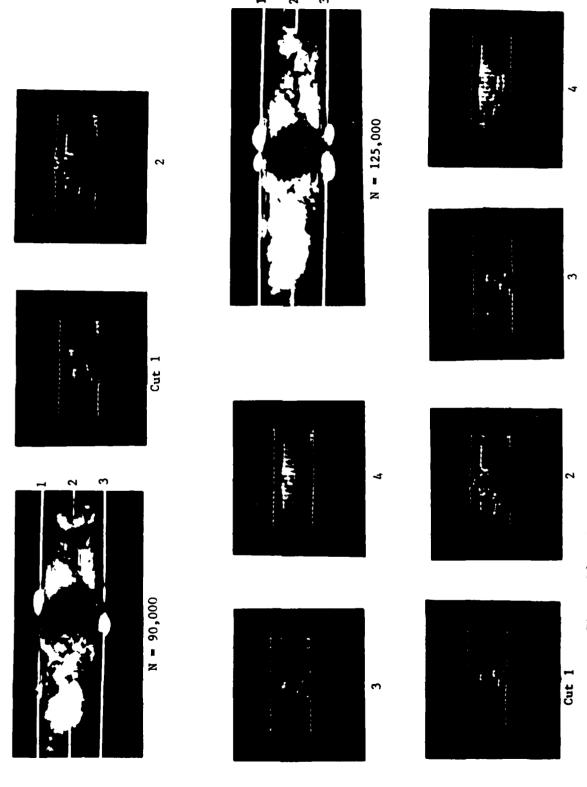
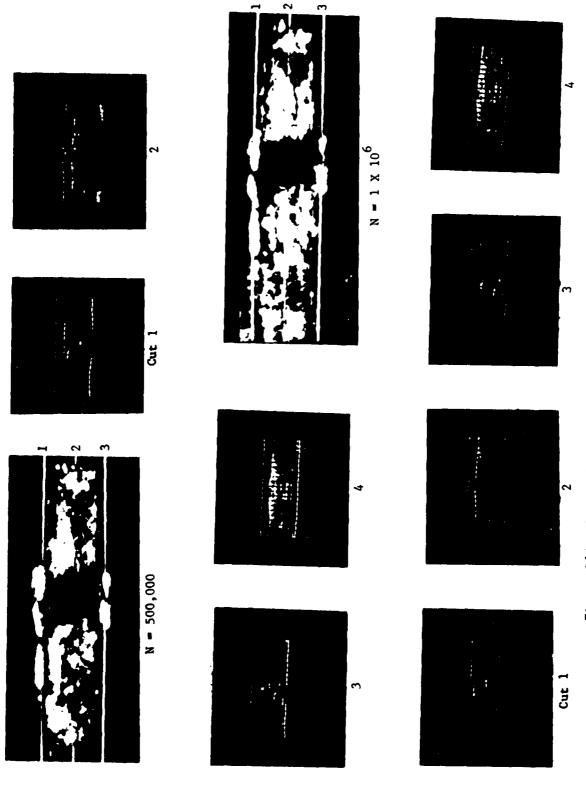
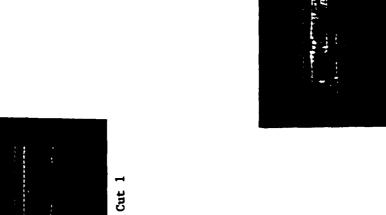




Figure D6c: Damage Growth Characteristics of the 24-Ply Laminate for Fatigue Condition B, R = -0.3 (AB-11, 12 x 10^6 without failure)

Damage Growth Characteristics of the 24-Ply Laminate for Fatigue Condition B, R = -0.3 (AB-11, 12 x 10 without failure) Figure D6d:

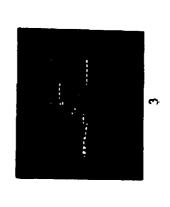
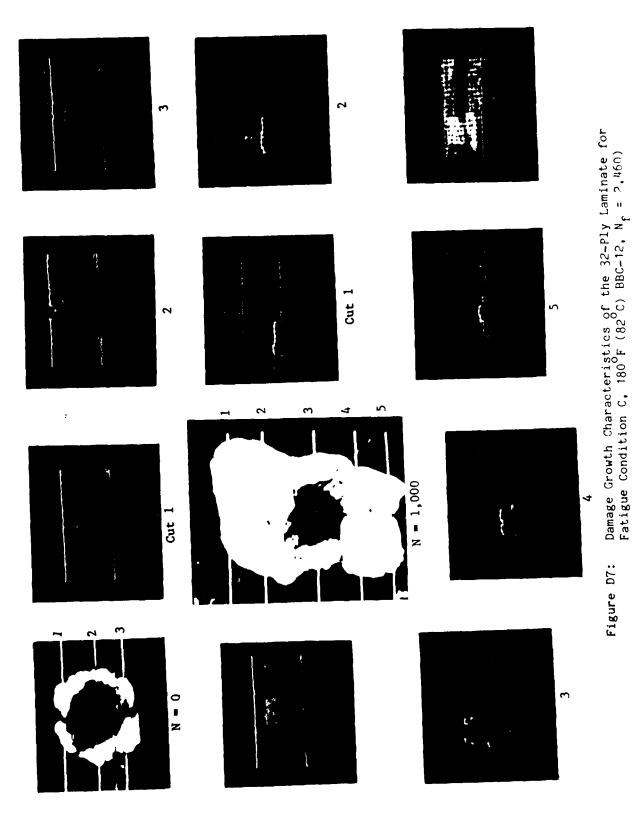



Figure D6e: Damage Growth Characteristics of the 2^4-Ply Laminate for Fatigue Condition B, R = -0.3 (AB-11, 12 x 10^6 without failure)

D31

Figure D7:

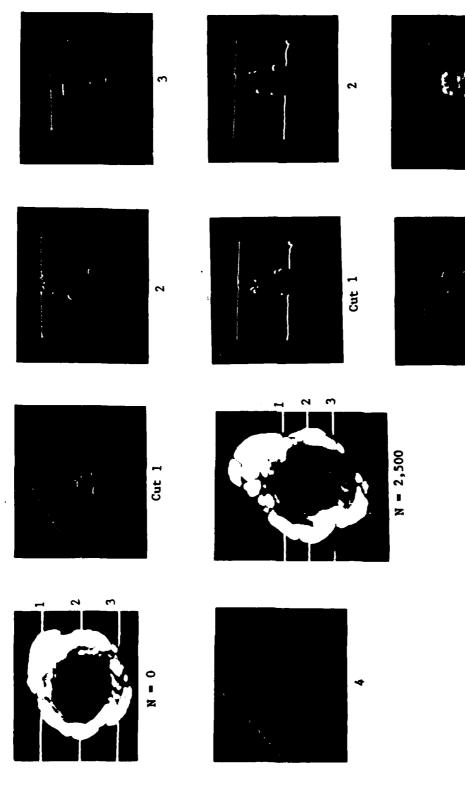
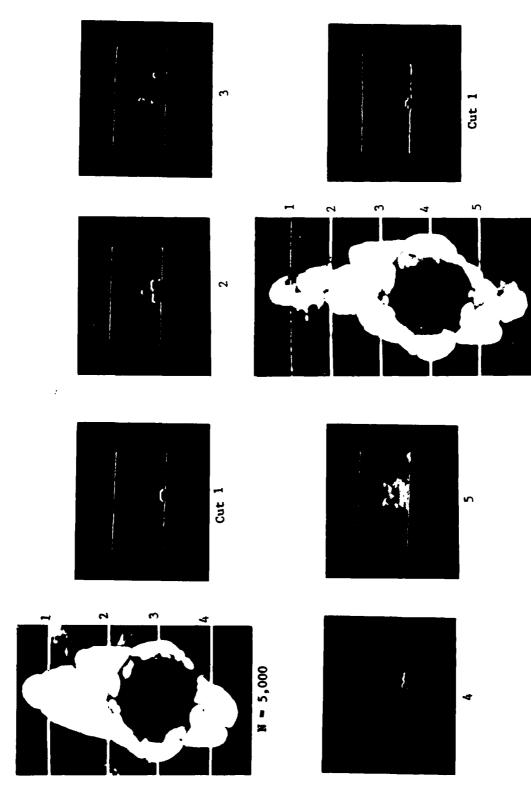



Figure D8a: Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition A, 4-Bar Support (EB-18, N = 58,005)

Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition A, 4-Bar Support (EB-18, N $_{
m f}$ = 58,005) Figure D8b:

N = 10,000

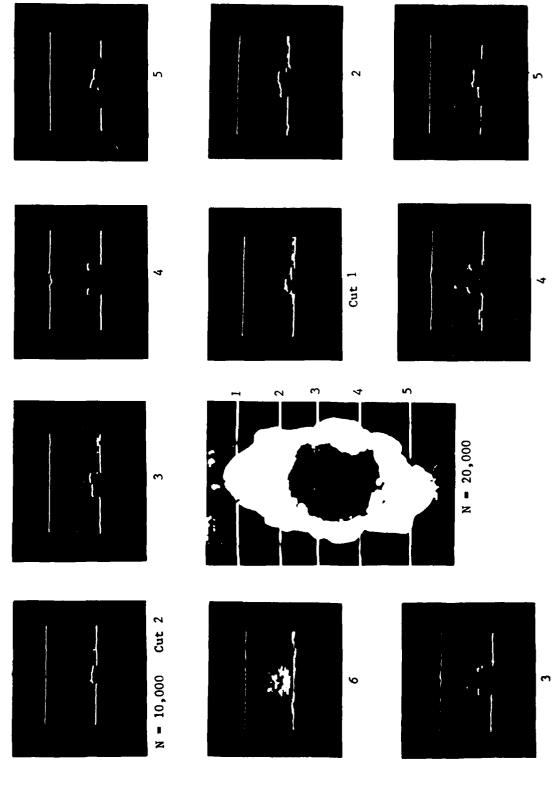


Figure D8c: Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition A, 4-Bar Support (EB-18, N $_{\rm f}$ = 58,005)

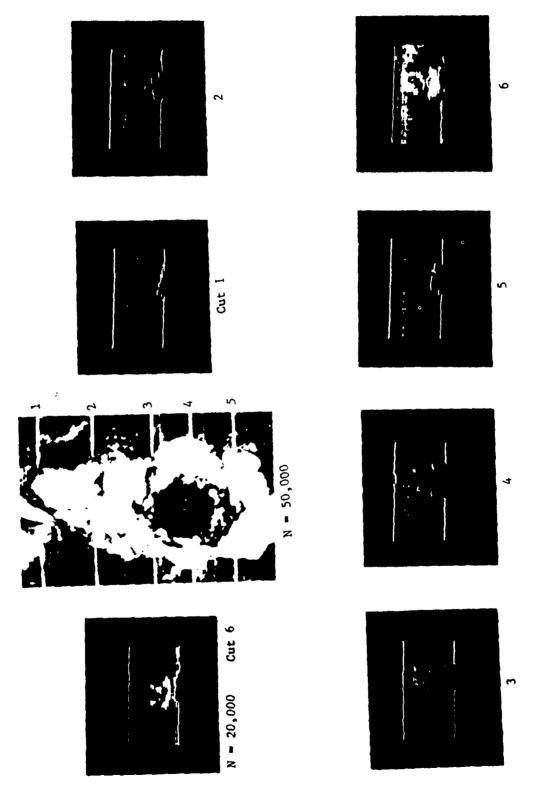


Figure D8d: Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition A, 4-Bar Support (EB-18, $^{
m f}$ = 58,005)

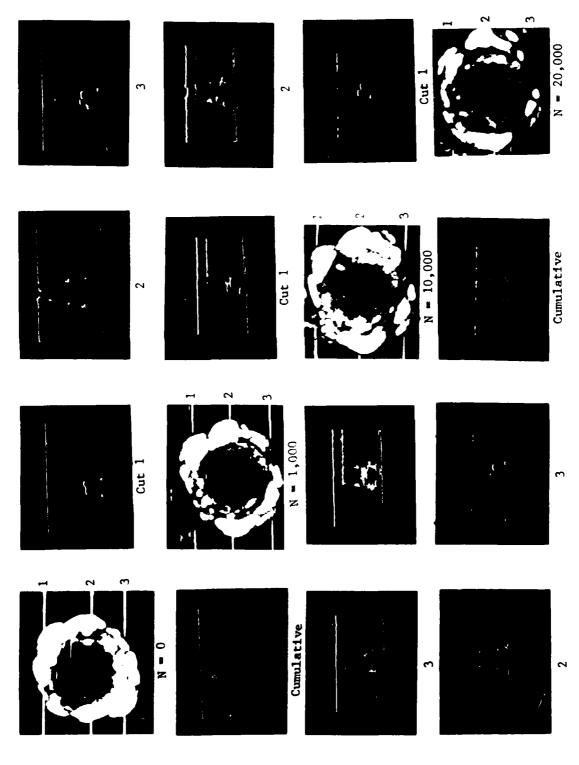


Figure D9a: Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition B, R = -0.3 (EA-8, 12 x 10^6 without failure)

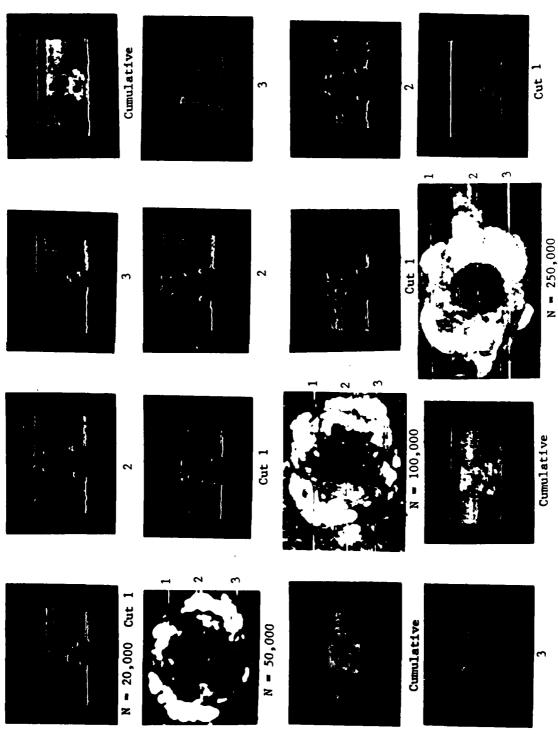


Figure D9b: Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition B, R = -0.3 (EA-8, 12 x 10 without failure)

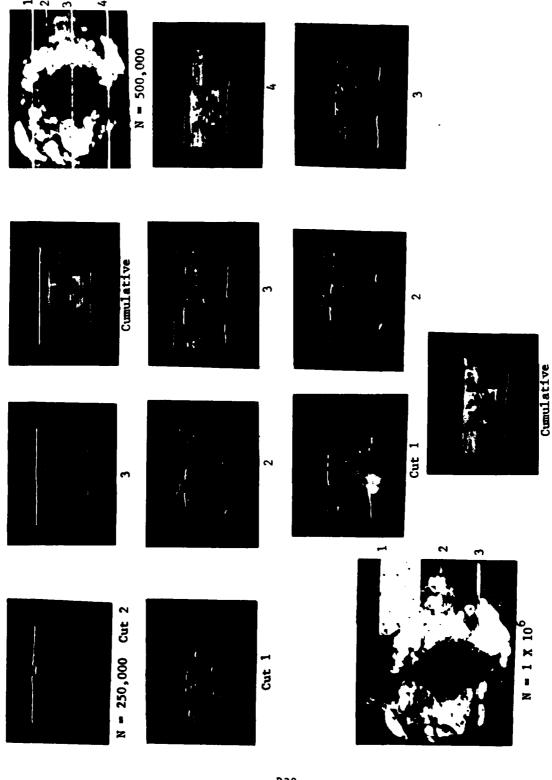
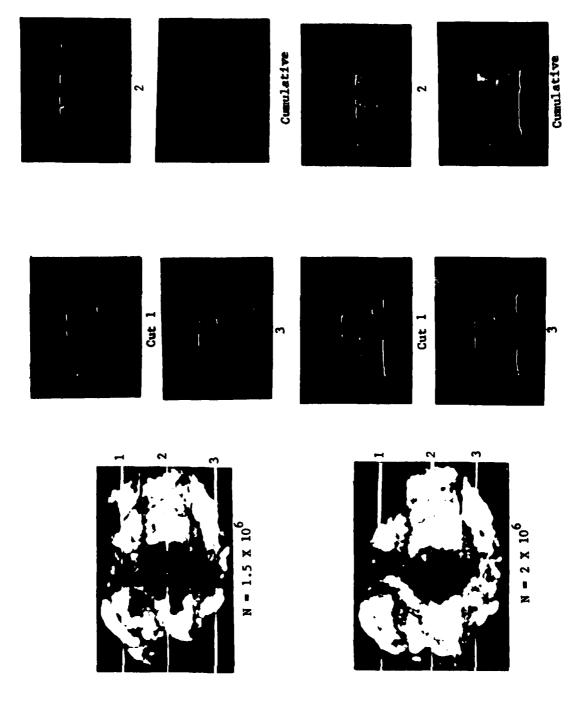



Figure D9c: Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition B, R = -0.3 (EA-8, 12 x 10^6 without failure)

Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition B, R = -0.3 (EA-8, 12 x 10 without failure) Figure D9d:

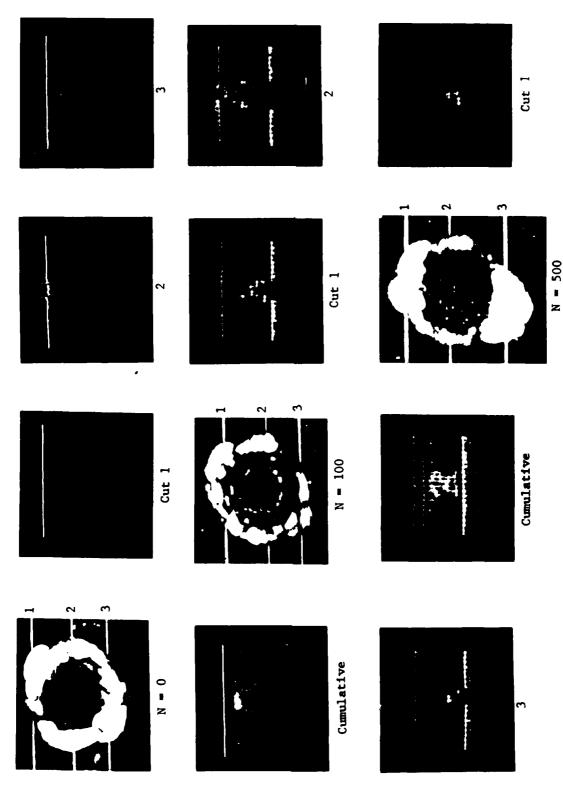


Figure D10a: Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition C, 180 F (82 C) (DC-28, N = 72,420)

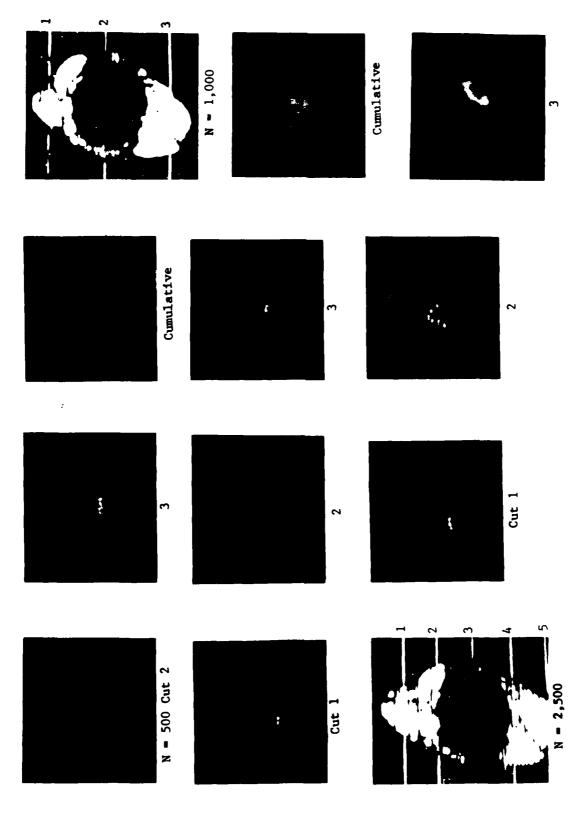
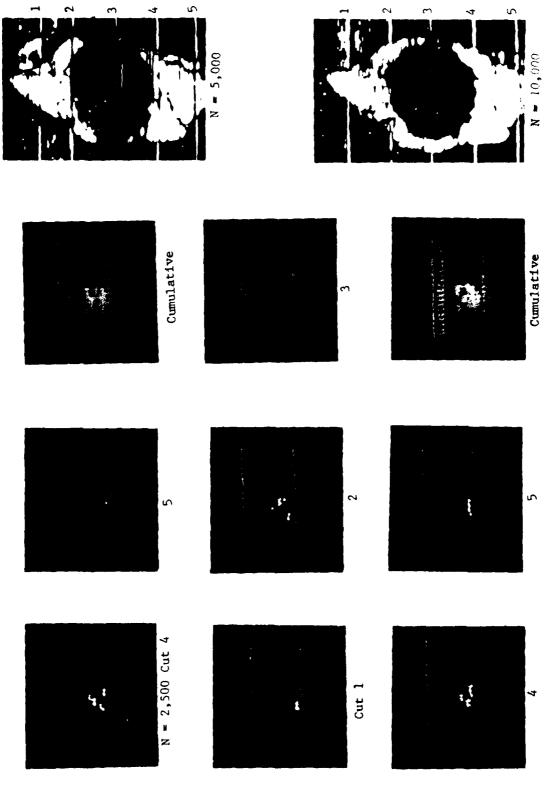



Figure D10b: Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition C, 180° F (82°C) (DC-28, N_f = 72,420)

.

Figure D10c: Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition C, 180 F (82 C) (DC-28, N $_{F}$ = 72,420)

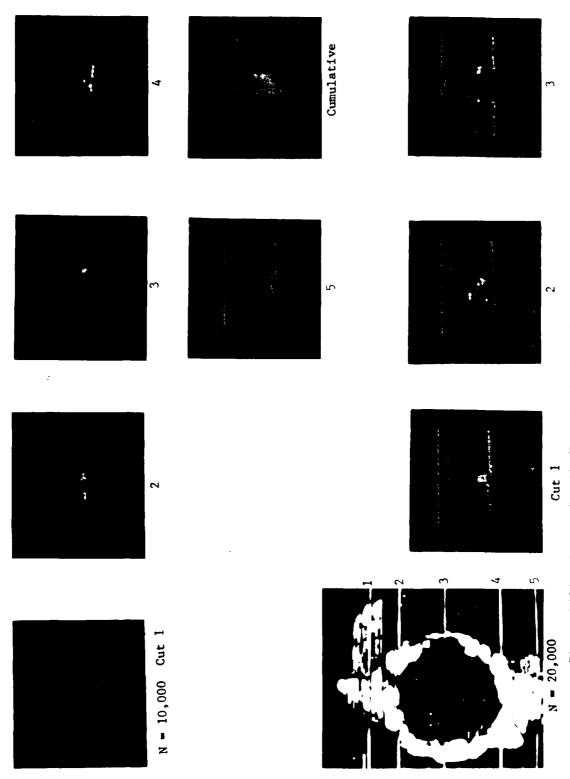
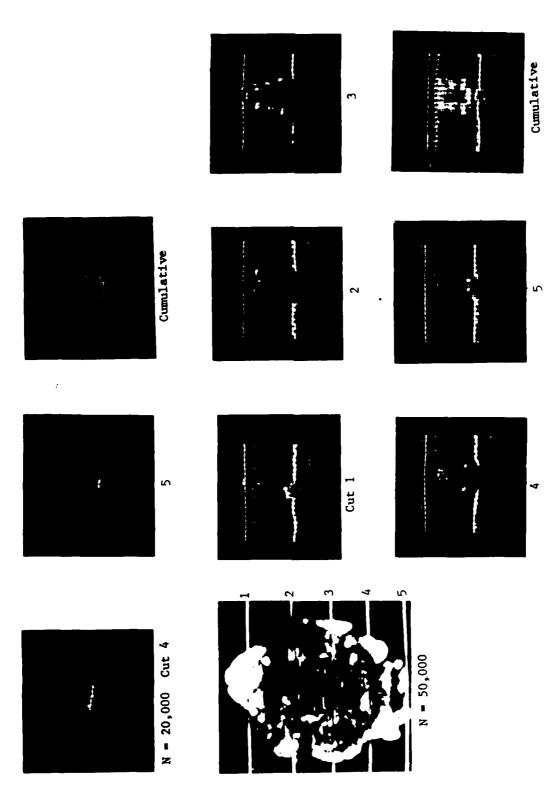
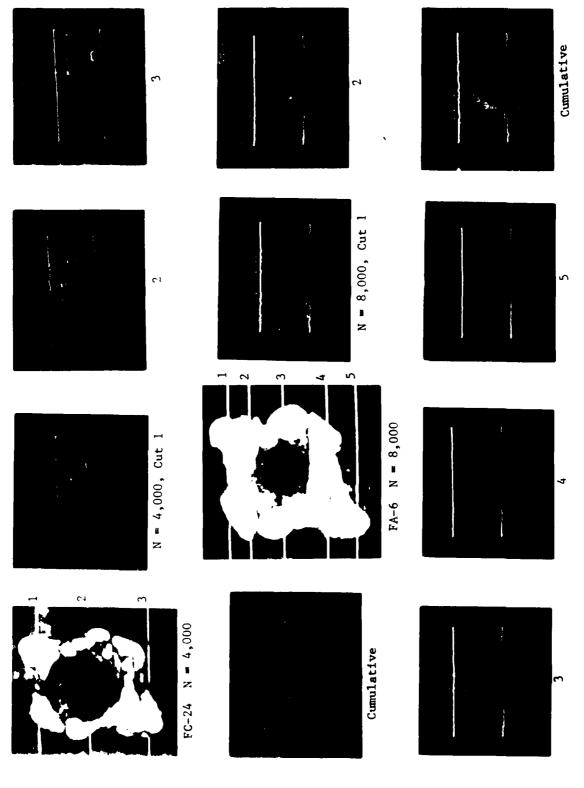
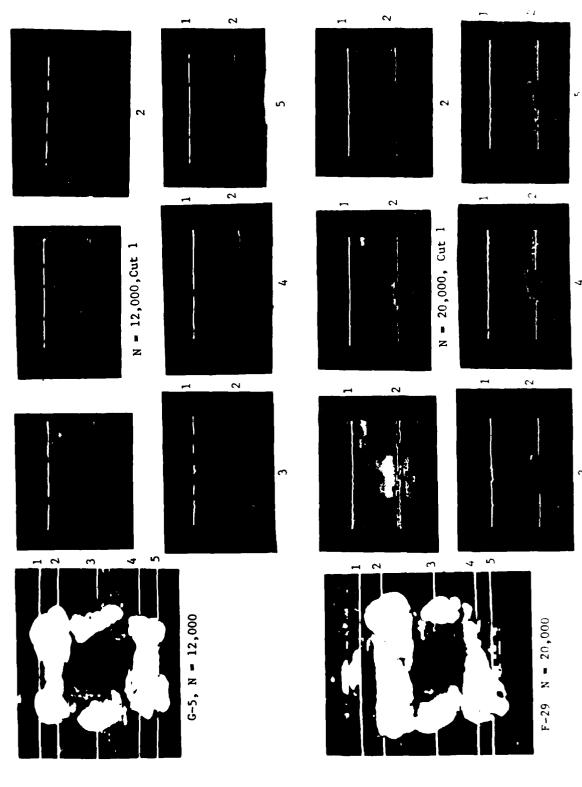
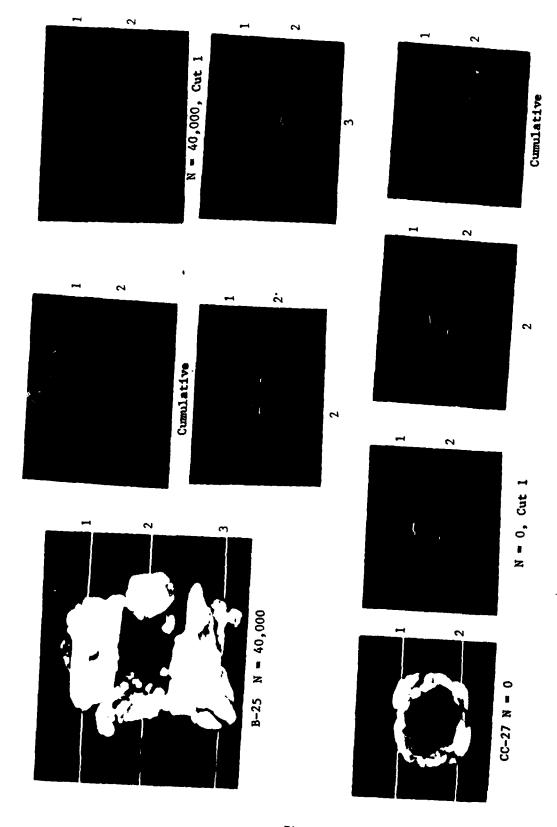


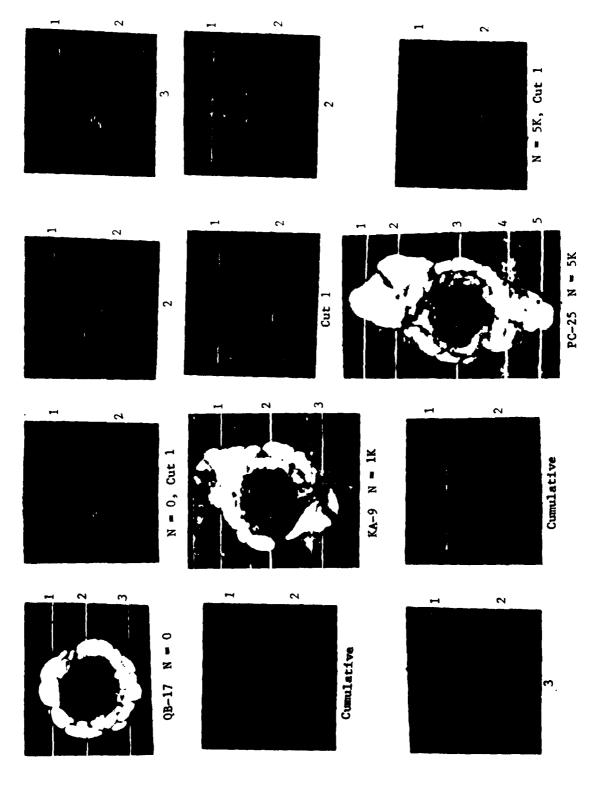
Figure D10d: Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition C, 180 F (82 C) (DC-28, N $_{\rm f}$ = 72,420)

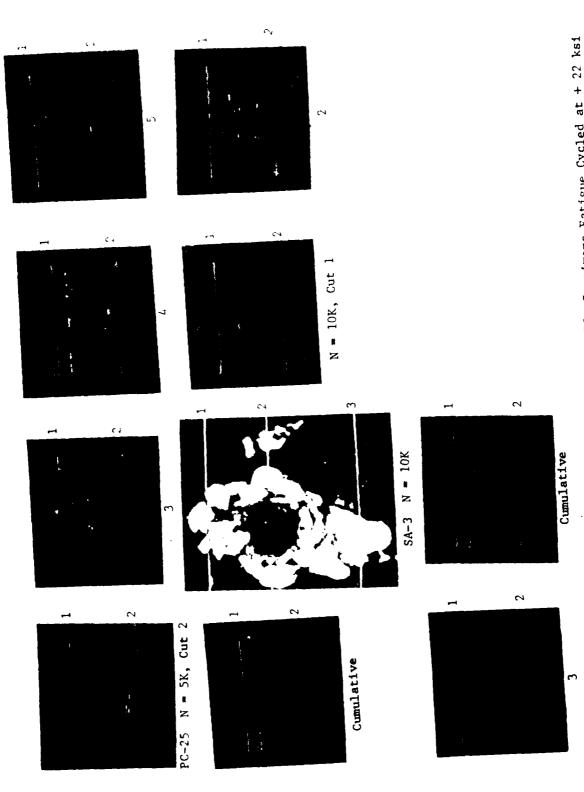



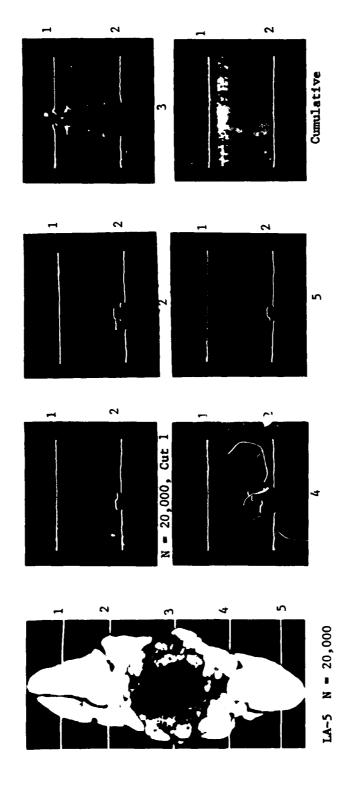

Figure D10e: Damage Growth Characteristics of the 32-Ply Laminate for Fatigue Condition C, 180 F (82 C) (DC-28, N = 72,420)

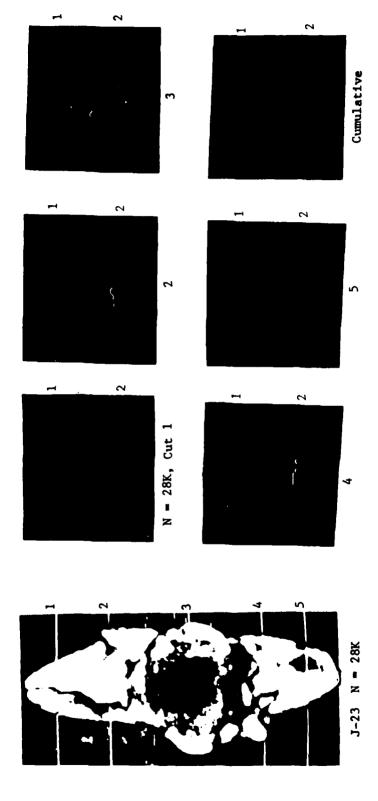
APPENDIX E


Damage Characteristics of Specimens
Tested for Residual Strength


Damage Characteristics of 24-Ply Specimens Fatigue Cycled at \pm 35 ksi (\pm 241 MPa) for Residual Strength Determination Figure Ela:


Damage Characteristics of 24-Plv Specimens Fatigue Cycled at + 35 ksi (+ 241 MPa) for Residual Strength Determination Figure Elb:


Damage Characteristics of $24\sim Ply$ Specimens Fatigue Cycled at \pm 35 ksi (\pm 241 MPa) for Residual Strength Determination Figure Elc:


Damage Characteristics of 32-Ply Specimens Fatigue Cycled at \pm 22 ksi (152 MPa) for Residual Strength Determination Figure E2a:

Damage Characteristics of 32-Ply Specimens Fatigue Cycled at ± 22 ksi (±152 MPa) for Residual Strength Determination Figure E2b:

Damage Characteristics of 32-Ply Specimens Fatigue Cycled at \pm 22 ksl (\pm 152 MPa) for Residual Strength Determination Figure E2c:

Damage Characteristics of 32-Ply Specimens Fatigue Cycled at \pm 22 ksi (\pm 152 MPa) for Residual Strength Determination Figure E2d:

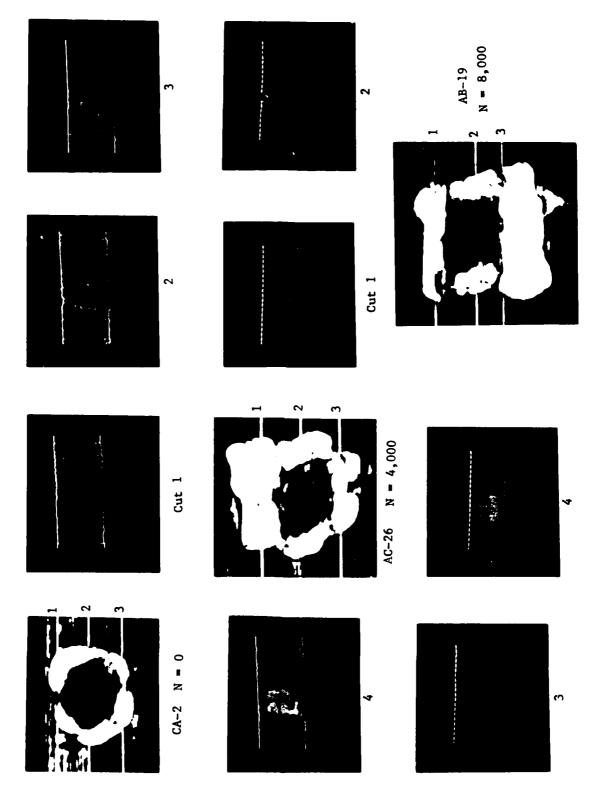


Figure E3a: Damage Characteristics of 24-Ply Specimens Cycled for Residual Strength Determination Under fatigue Condition A, 4-Bar Support (See Table XXXV, Vol. II)

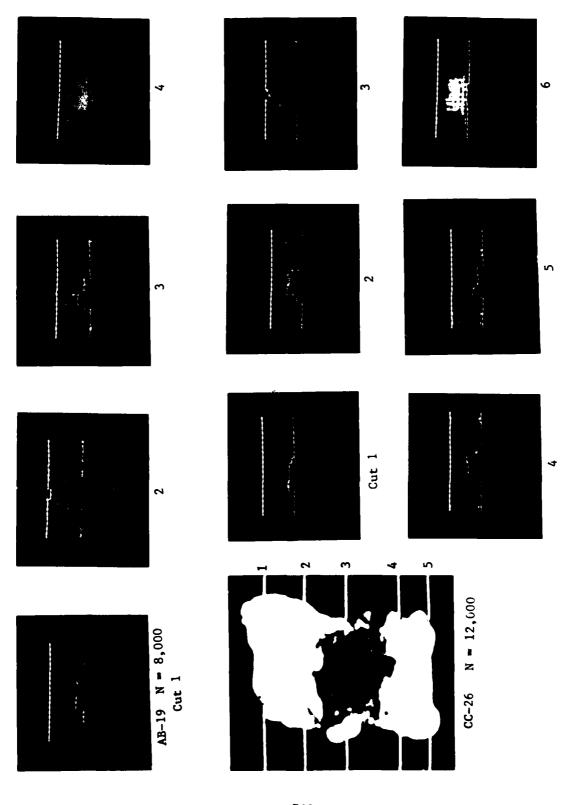


Figure E3b: Damage Characteristics of 24-Ply Specimens Cycled for Residual Strength Determination Under fatigue Condition A, 4-Bar Support (See Table XXXV, Vol. II)

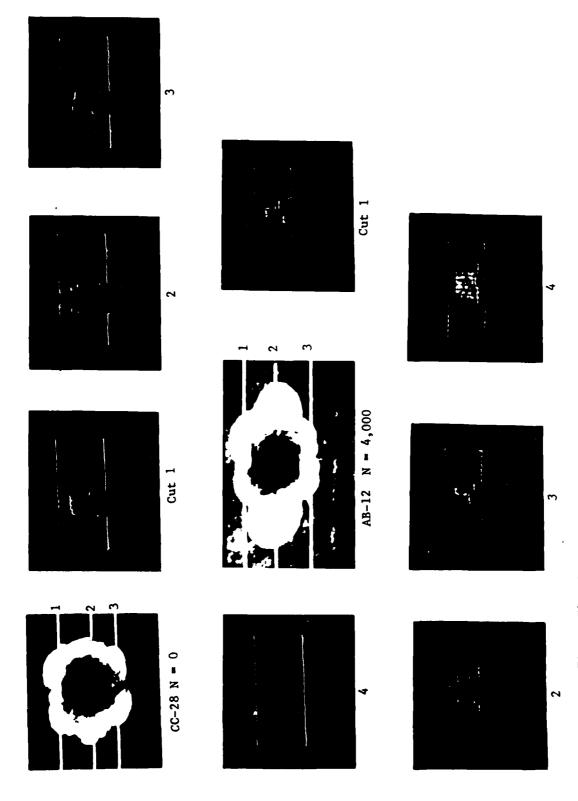


Figure E4a: Damage Characteristics of 24-Ply Specimens Cycled for Residual Strength Determination Under fatigue Condition B, R = -0.3 (See Table XXXV, Vol. II)

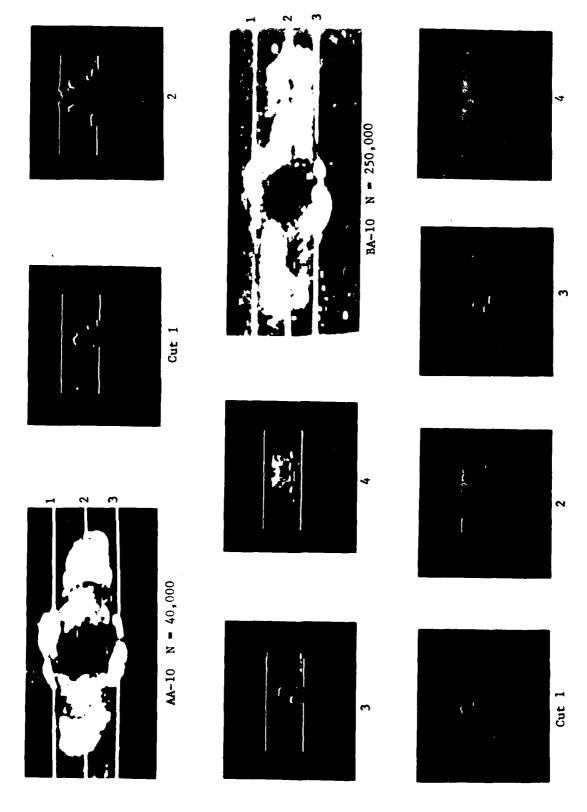


Figure E4b: Damage Characteristics of 24-Ply Specimens Cycled for Residual Strength Determination Under fatigue Condition B, R = -0.3 (See Table XXXV, Vol. II)

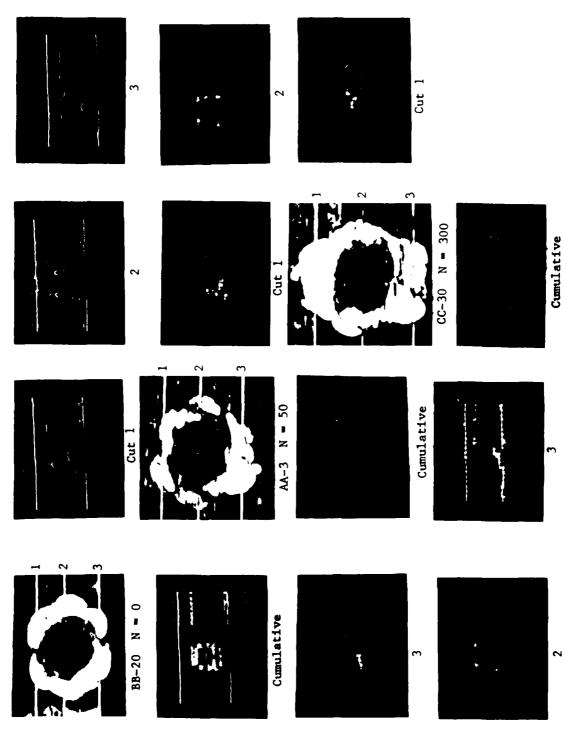


Figure E5a: Damage Characteristics of 24-Ply Specimens Cycled for Residual Strength Determination Under fatigue Condition C, 180⁹F (82^oC) (See Table XXXV, Vol. II)

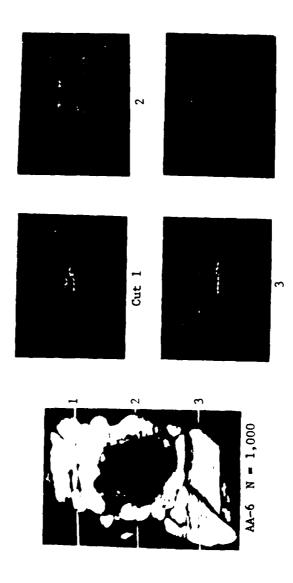


Figure E5b: Damage Characteristics of 24-Ply Specimens Cycled for Residual Strength Determination Under fatigue Condition C, 180 F (82°C) (See Table XXXV, Vol II)

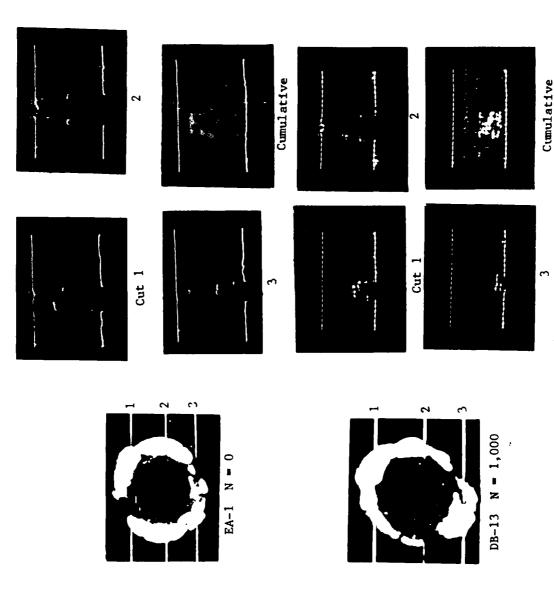
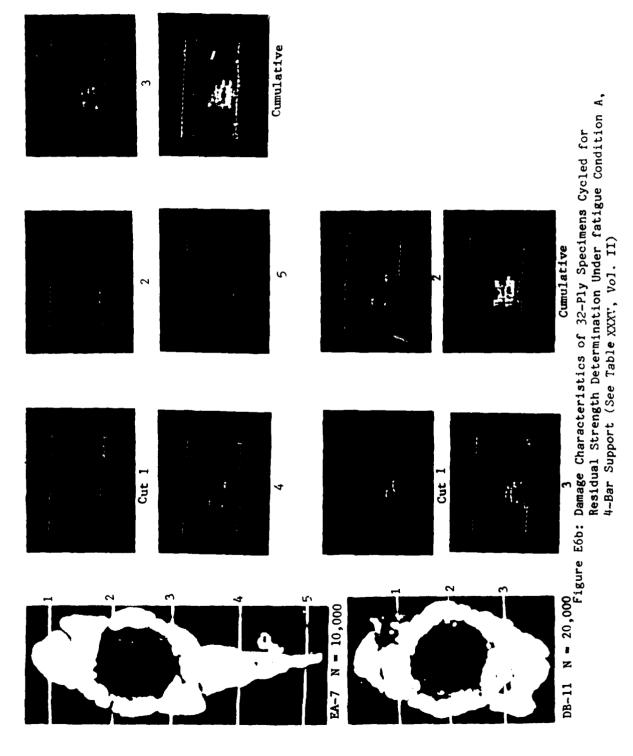



Figure E6a: Damage Characteristics of 32-Ply Specimens Cycled for Residual Strength Determination Under fatigue Condition A. 4-Bar Support (See Table XXXV, Vol. II)

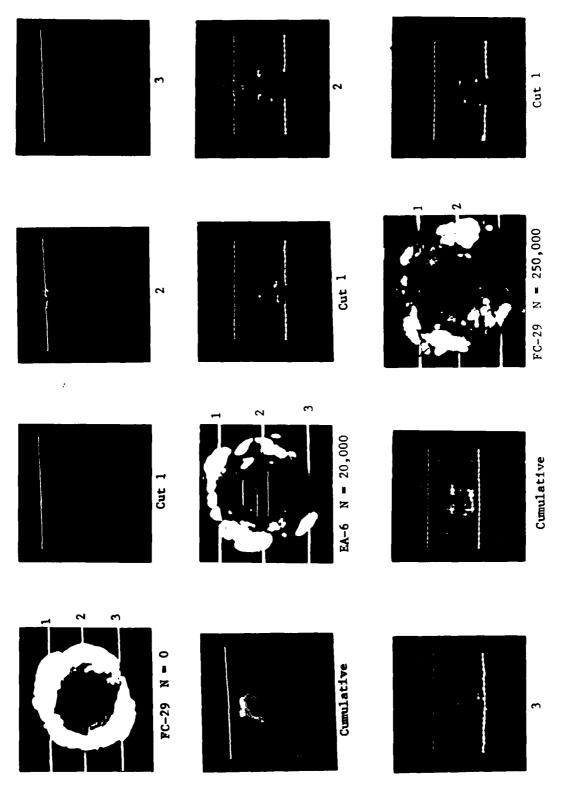


Figure E7a: Damage Characteristics of 32-Ply Specimens Cycled for Residual Strength Determination Under fatigue Condition B, R = -0.3 (See Table XXXV, Vol. II)

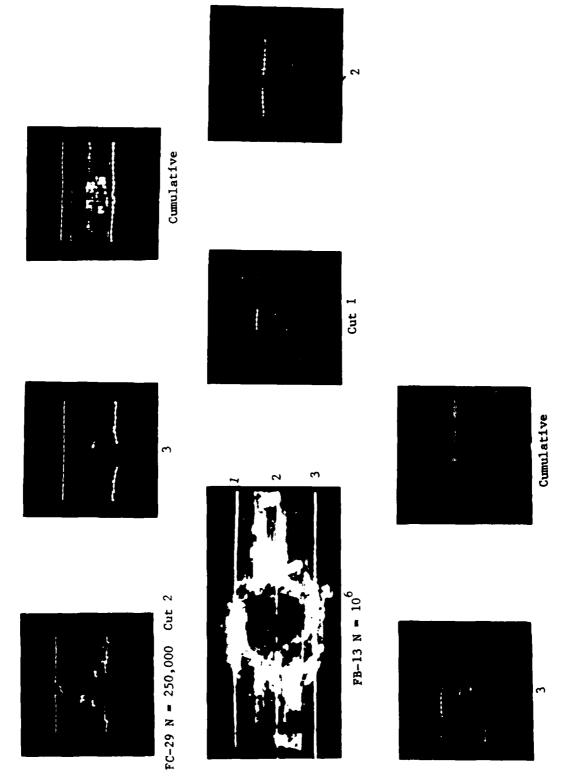


Figure E7b: Damage Characteristics of 32-Ply Specimens Cycled for Residual Strength Determination Under fatigue Condition B. R = -0.3 (See Table XXXV, Vol. II)

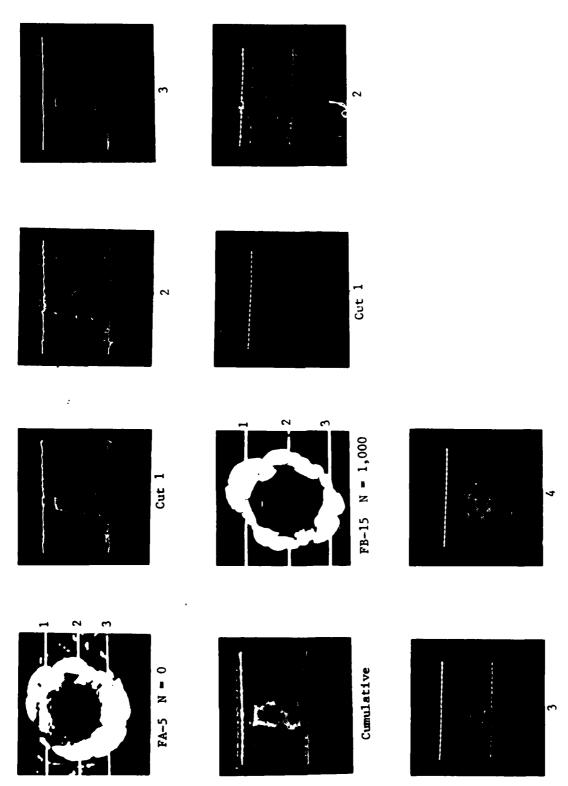


Figure E8a: Damage Characteristics of 32-Ply Specimens Cycled for Residual Strength Determination Under fatigue Condition C, 180°F (82°C) (See Table XXXV, Vol. II)

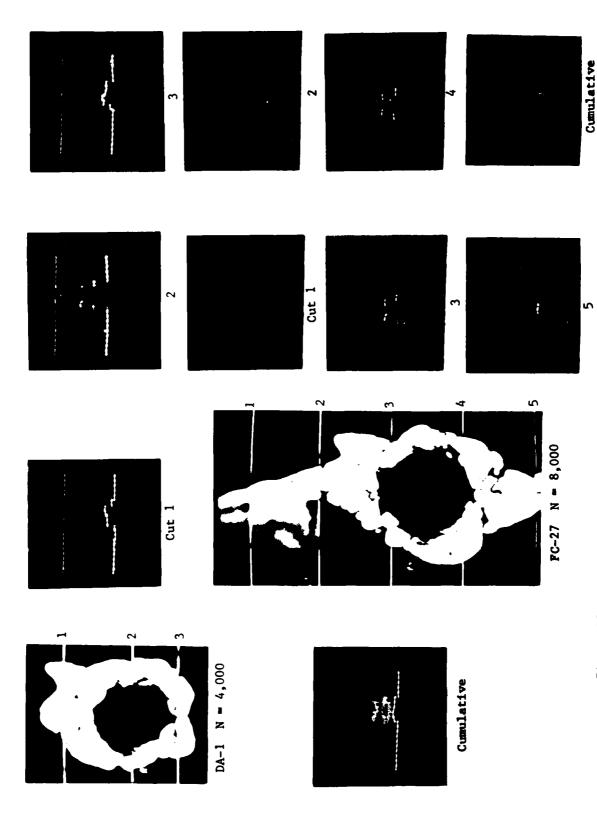


Figure E8b: Damage Characteristics of 32-Ply Specimens Cycled for Residual Strength Determination Under fatigue Condition C, 180 F (82°C) (See Table XXXV, Vol. II)

APPENDIX F

Damage Measurements of Specimens
Tested for Residual Strength

F1 - DAMAGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED AT ±35ksi TO 4000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK II

		N ₀ =0			N ₁ =4000	
SPEC.	WIDTH	LENGTH	AREA	WIDTH	LENGTH	AREA
ID.	X,in.	Y,in.	A,in. ²	X,in.	Y,in.	A,in. ²
AB-13	0.58	0.70	0.31	1.08	0.99	0.70
AB-14	0.63	0.73	0.35	0.76	0.88	0.45
AC-29	0.65	0.72	0.37	0.74	0.94	0.46
BA-1	0.66	0.83	0.43	1.21	0.97	0.94
BA-9	0.65	0.81	0.40	1.04	0.89	0.63
CB-11	0.66	0.78	0.41	0.83	1.04	0.60
CC-23	0.66	0.75	0.39	1.00	0.83	0.49
DA-3	0.62	0.91	0.42	1.05	0.92	0.68
DC-22	0.65	0.89	0.41	1.21	0.91	0.84
EA-7	0.70	0.73	0.41	1.33	1.12	1.06
EB-14	0.69	0.79	0.43	1.10	1.00	0.81
EC-25	0.63	0.88	0.42	1.07	1.01	0.78
EC-27	0.64	0.79	0.40	0.79	0.94	0.50
FB-19	0.63	0.72	0.35	0.69	0.88	0.41
FC-24	0.65	0.79	0.40	1.15	0.89	0.74
FC-25	0.61	0.75	0.38	0.84	0.94	0.56
GA-4	0.66	0.79	0.42	1.34	0.95	0.85
GB-16	0.63	0.76	0.37	0.90	0.91	0.55
HA-2	0.66	0.79	0.41	1.15	0.94	0.85
HA-7	0.60	0.72	0.32	0.70	0.82	0.40
HC-24	0.70	0.79	0.42	1.70	1.43	1.62
IA-1	0.70	0.83	0.46	1.24	1.04	0.89
IA-5	0.69	0.76	0.42	0.79	1.01	0.54

F2 - DAMAGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED AT ±35 ksi TO 8000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK III

	N_=0			N ₁ =4000		
SPEC.	WIDTH	LENGTH	AREA	WIDTH	LENGTH	AREA
ID.	X,in.	Y,in.	A,in. ²	X,in.	Y,in.	A,in. ²
AA-7	0.69	0.79	0.42	0.94	1.32	0.81
AA-9	0.69	0.81	0.45	a	a	a
AC-24	0.68	0.84	0.49	1.02	1.10	0.85
BA-6	0.68	0.80	0.48	a	a	a
BB-12	0.71	0.87	0.51	a	a	a
BC-30	0.70	0.78	0.42	0.82	0.97	0.58
CB-12	0.66	0.81	0.51	0.91	1.03	0.67
CB-16	0.62	0.78	0.37	0.94	0.94	0.55
DA-5	0.70	0.83	0.48	1.24	0.96	0.95
DB-18	0.66	0.74	0.42	0.86	1.01	0.67
DC-29	0.66	0.79	0.34	0.65	2.19	0.65
EA-5	0.64	0.78	0.45	1.99	1.51	2.35
EC-24	0.68	0.83	0.44	0.95	1.01	0.68
EC-29	0.64	0.74	0.40	0.97	1.06	0.72
FA-6	0.66	0.71	0.41	1.26	1.06	0.96
FB-11	0.88	0.99	0.65	1.66	1.12	1.26
FC-26	0.70	0.81	0.46	1.66	1.51	1.70
GA-6	0.71	0.76	0.47	2.16	1.66	2.28
GC-22	0.70	0.77	0.43	1.58	1.28	1.52
HB-15	0.61	0.72	0.42	a	a	a
HB-16	0.66	0.74	0.42	0.98	1.03	0.70
IB-15	0.69	0.76	0.43	1.12	1.06	0.85
IC-27	0.71	0.83	0.48	1.89	1.32	1.94

a = Specimen failed

F3 - DAMAGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED AT +35ksi TO 12,000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK III

	N ₀ =0			N ₃ =12,000			
SPEC.	WIDTH	LENGTH	AREA	WIDTH	LENGTH	AREA	
ID.	X,in.	Y.in.	A,in ²	X,in.	Y,in.	A, in. ²	
AA-5	0.66	0.81	0.41	1.03	1.02	0.77	
AC-27	0.61	0.76	0.36	0.72	1.01	0.57	
BB-19	0.65	0.75	0.37	0.96	1.08	0.77	
BC-21	0.69	0.84	0.43	0.86	1.06	0.74	
CA-2	0.66	0.77	0.38	0.70	1.04	0.53	
CA-6	0.64	0.81	0.39	a	a	a	
CB-14	0.65	0.77	0.39	1.07	1.10	0.81	
DA-2	0.64	0.84	0.42	a	a	a	
DA-10	0.60	0.74	0.35	0.83	0.97	0.47	
DB-15	0.68	0.79	0.42	1.68	1.45	1.64	
DB-19	0.66	0.76	0.38	0.78	1.04	0.57	
EA-4	0.65	0.79	0.42	а	a	a	
FA-1	0.66	0.83	0.46	1.38	1.21	1.20	
FB-18	0.66	0.78	0.41	a	a	a	
GA-5	0.67	0.82	0.44	1.13	1.04	0.92	
GB-18	0.63	0.77	0.38	0.90	0.94	0.64	
HA-6	0.70	0.75	0.40	1.21	1.15	0.88	
HA-8	0.63	0.76	0.35	1.31	1.16	1.00	
HB-19	0.64	0.74	0.38	а	a	a	
HC-21	0.70	0.85	0.48	1.97	1.52	1.93	
IA-2	0.69	0.82	0.45	1.42	1.23	1.29	
IA-6	0.65	0.81	0.39	1.04	1.01	0.69	
IA-8	0.64	0.77	0.38	0.88	1.01	0.63	

a = Specimen failed

F4 - DAMANGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED AT +35ksi TO 20,000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK III

	N =0			N ₄ =20,000		
SPEC.	WIDTH	LENGTH	AREA	WIDTH	LENGTH	AREA
ID.	X,in.	Y,in.	A,in ²	X,in.	Y,in.	A,in ²
AA-3	0.70	0.76	0.42	0.91	1.07	1.05
AB-17	0.70	0.83	0.53	s	a	a
AC-25	0.65	0.82	0.40	1.09	1.30	0.80
BA-8	0.67	0.81	0.44	a	a	a
BB-14	0.72	0.81	0.47	1.20	1.04	0.89
BC-22	0.72	0.81	0.47	a	a	a
BC-28	0.63	0.73	0.37	a	a	а
CA-4	0.72	0.76	0.44	a	a	a
CA-9	0.68	0.76	0.42	a	a	a
CB-17	0.66	0.83	0.41	0.66	0.97	0.49
DB-14	0.68	0.84	0.43	1.14	1.23	0.92
EB-17	0.70	0.86	0.47	a	a	a
EC-26	0.64	0.81	0.39	a	a	а
FA-2	0.70	0.81	0.46	1.57	1.10	1.16
FB-15	0.64	0.77	0.39	1.77	1.45	1.74
FC-29	0.66	0.72	0.40	1.35	1,19	1.10
GC-23	0.72	0.78	0.48	1.01	1.30	0.97
GC-25	0.71	0.81	0.42	1.63	1.36	1.30
GC-24	0.66	0.79	0.40	1.27	1.06	0.91
HB-12	0.62	0.81	0.38	a	a	а
HC-29	0.65	0.73	0.39	a	a	a
IB-12	0.62	0.71	0.40	0.92	1.12	0.69
IB-14	0.63	0.81	0.38	a	a	а

a = Specimen failed

F5 - DAMAGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED AT ±35ksi TO 40,000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK III

	N ₀ =0			N ₅ =40,000		
SPEC.	WIDTH	LENGTH	AREA	WIDTH	LENGTH	AREA
ID.	X,in.	Y,in.	A,in. ²	X,in.	Y,in.	A,in. ²
A-26	0.63	0.72	0.36	0.93	1.21	0.71
AA-8	0.61	0.75	0.38	а	a	a
B-15	0.68	0.86	0.46	1.62	2.56	2.86
B-25	0.55	0.69	0.34	1.31	1.17	1.33
B-26	0.62	0.75	0.38	а	a	a
C-19	0.59	0.74	0.36	1.44	1.21	1.42
C-24	0.60	0.77	0.36	1.08	1.26	0.82
C-27	0.65	0.79	0.41	1.50	1.22	1.35
CA-3	0.66	0.85	0.43	a	a	a
D-13	0.64	0.78	0.40	а	a	a
D-26	0.59	0.80	0.55	а	a	а
E-9	0.58	0.68	0.33	1.30	1.46	1.23
E-15	0.65	0.83	0.61	а	a	а
E-30	0.59	0.73	0.34	2.17	1.45	2.16
F-7	0.61	0.70	0.36	a	а	а
F-27	0.61	0.72	0.36	0.93	1.21	0.86
G-1	0.63	0.80	0.40	а	a	a
G-3	0.61	0.75	0.39	а	a	а
G-9	0.59	0.68	0.36	1.32	1.35	1.53
G-15	0.65	0.83	0.41	а	a	а
н-3	0.61	0.75	0.39	а	a	а
н-30	0.62	0.72	0.55	1.97	1.50	2.50
1-16	0.63	0.76	0.38	1.14	1.28	0.93

a = Specimen failed

F6 - DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED AT +22ks1 TO 1000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK II

SPEC ID.	N ₀ = 0			N ₁ = 1000			
	WIDTH X,in.	LENGTH Y, in	AREA A,in ²	WIDTH X,in.	LENGTH Y,in.	AREA A,in ²	
JB-13	0.83	0.80	0.54	0.88	0.80	0.53	
JB-16	0.71	0.70	0.42	0.74	0.72	0.44	
JG-22	0.92	0.86	0.60	1.01	0.88	0.70	
KA-9	0.81	0.84	0.58	1.06	0.88	0.69	
KB-18	0.87	0.77	0.55	0.81	0.81	0.53	
KE-27	0.75	0.81	0.51	0.81	0.81	0.54	
LA-3	0.83	0.79	0.56	1.17	0.81	0.75	
LA-9	0.87	0.86	0.59	0.97	0.87	0.67	
MA-8	0.82	0.83	0.56	1.16	0.81	0.73	
MC-23	0.80	0.88	0.60	1.08	0.86	0.61	
MC-28	0.73	0.76	0.47	0.99	0.81	0.60	
NA-4	0.86	0.83	0.57	1.23	0.87	0.84	
NC-28	0.84	0.83	0.60	1.21	0.83	0.75	
NC-30	0.77	0.77	0.54	1.12	0.80	0.70	
PA-3	0.80	0.70	0.47	0.79	0.76	0.47	
PA-9	0.79	0.78	0.54	1.11	0.79	0.67	
QA-4	0.83	0.86	0.60	1.13	0.90	0.76	
QA-6	0.83	0.90	0.61	1.13	0.90	0.78	
QB-17	0.83	0.81	0.56	0.76	0.80	0.53	
RA-2	0.86	0.88	0.65	1.44	0.89	0.89	
RC-29	0.86	0.90	0.69	1.03	0.91	0.74	
SA-7	0.80	0.80	0.55	0.97	0.83	0.65	
SB-19	0.88	0.81	0.57	0.97	0.86	0.66	

F7 - DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED AT ±22ksi TO 5,000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK II

SPEC	$N_0 = 0$			$N_2 = 5000$		
ID	WIDTH	LENGTH	AREA	WIDTH	LENGTH	AREA
	χ,in	Y,in	A,in ²	χ,in	Y, in	A, in ²
74. /	0.07	0.00				
JA-4	0.97	0.89	0.74	1.19	0.87	0.76
J A- 5	0.88	0.81	0.58	1.74	0.86	0.94
KB-16	0.92	0.92	0.66	1.52	0.92	0.92
KC-24	0.82	0.88	0.57	1.01	0.88	0.67
KC-28	0.81	0.86	0.58	0.90	0.81	0.54
LA-2	0.86	0.90	0.61	1.38	0.86	0.78
LB-16	0.84	0.83	0.58	1.37	0.85	0.87
MA-6	0.84	0.81	0.56	1.99	0.88	1.11
MB-16	0.89	0.86	0.45	1.47	0.85	0.78
MC-22	0.74	0.74	0.49	1.79	0.84	0.98
NA-2	0.81	0.83	0.56	1.40	0.85	0.81
NC-22	0.79	0.88	0.57	1.77	0.83	1.02
NC-26	0.77	0.83	0.51	1.25	0.82	0.70
PB-15	0.72	0.74	0.44	0.82	0.74	0.69
PC-25	0.85	0.83	0.57	1.61	0.85	0.86
QA-1	0.87	0.90	0.58	1.34	0.88	0.52
QA-9	0.76	0.81	0.52	1.88	0.77	0.85
QC-28	0.80	0.89	0.57	1.41	0.88	0.84
RB-19	0.83	0.88	0.59	1.11	0.90	0.69
RB-20	0.47	0.80	0.49	1.12	0.77	0.54
RC-27	0.87	0.89	0.61	1.87	0.87	0.99
SB-13	0.91	1.00	0.72	1.20	0.94	0.81
SC-22	0.83	0.92	0.58	1.72	0.92	0.98

F8 - DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED AT +22ks1 TO 10,000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK II

SPEC	N _O = 0			N ₃ = 10,000		
ID	WIDTH	LENGTH	AREA	WIDTH	LENGTH	AREA
	X,in	y,in_	A, in ²	X, in	y,in	A,in ²
70. 27	0.87	0.92	0.70	1.49	0.89	0.84
JC-27	0.87	0.87	0.58	1.50	0.98	1.01
JC-28	0.83	0.87	0.57	2.04	0.89	2.30
KA-2	0.83	0.87	0.59	1.37	0.84	0.85
KA-7		0.80	0.52	1.39	0.84	0.81
KC-22	0.81	0.83	0.55	1.49	0.81	0.80
LA-7	0.83	0.86	0.58	1.57	0.88	0.96
LC-23	0.83		0.50	1.50	0.86	0.98
LC-27	0.79	0.85	0.51	1.11	0.93	0.71
MC-25	0.78	0.77	0.53	1.03	0.88	0.66
MC-29	0.81	0.77	0.50	1.14	0.83	0.67
NB-13	0.81	0.79		2.67	0.89	1.42
NB-16	0.81	0.89	0.57	1.41	0.83	0.80
PA-1	0.77	0.67	0.42		0.85	0.79
PA-4	0.83	0.74	0.46	1.46		0.79
PC-21	0.72	0.69	0.42	0.72	0.68	0.46
PC~27	0.76	0.74	0.49	0.88	0.76	1.05
QB-12	0.79	0.83	0.52	1.79	0.88	
QC-23	0.83	0.89	0.59	1.77	0.87	0.81
RB-17	0.79	0.80	0.50	1.64	0.83	0.92
RC-23	0.95	1.00	0.73	1.86	0.94	1.06
SA-3	0.81	0.86	0.54	1.61	0.97	0.95
SA-5	0.77	0.76	0.47	1.11	0.81	0.63
SB-11	0.90	0.89	0.62	1.88	0.87	1.07

F9 - DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED AT +22ksi TO 20,000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK II

SPEC	N _O = 0			$N_4 = 20,$	000	
ID	WIDTH	LENGTH	AREA	WIDTH	LENGTH	AREA
	X,in	Y, in	A,in ²	X,in	Y, in	A,in ²
JB-11	0.81	0.83	0.54	1.30	0.98	0.92
JB-14	0.76	0.78	0.48	1.50	0.84	0.88
JB-15	0.80	0.83	0.52	1.00	0.89	0.64
KB-12	0.72	0.80	0.51	1.38	0.90	0.95
LA-4	0.81	0.81	0.53	2.00	0.96	1.21
LA-5	0.80	0.81	0.53	2.18	0.94	1.10
LC-31	0.70	0.77	0.42	1.41	0.86	0.84
MB-11	0.79	0.83	0.50	2.62	0.88	1.37
MB-13	0.83	0.84	0.53	2.02	0.94	1.09
MB-18	0.84	0.84	0.56	1.57	0.88	. 0.93
NA-6	0.87	0.92	0.62	1.41	0.96	0.97
NB-17	0.93	0.94	0.66	1.30	0.93	0.90
NB-19	0.79	0.85	0.54	1.12	1.01	0.74
PB-17	0.74	0.72	0.42	2.06	0.91	0.96
QB-13	0.86	0.92	0.59	2.01	0.95	1.20
QC-22	0.93	0.90	0.64	1.86	1.00 .	1.28
QC-30	0.80	0.73	0.49	1.68	0.82	0.84
RA-7	0.85	0.90	0.60	1.59	0.94	1.00
RC-22	0.96	0.97	0.74	1.42	0.98	1.02
RC-24	0.83	0.88	0.58	2.44	0.93	1.37
SA-9	0.90	0.85	0.59	а	a	а
SC-23	0.82	0.86	0.56	2.38	0.89	1.44
SC-27	0.81	0.86	0.60	2.19	1.05	1.28

F10 - DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED AT +22ksi TO 28,000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK II

SPEG	N = 0			N = 28,0	000	
ID	WIDTH	LENGTH	AREA	WIDTH	LENGTH	AREA
	X,in	Y, in	A,in ²	X,in	Y,in	A,in ²
JB-18	0.92	0.85	0.64	2.89	1.10	1.94
JC-23	0.86	0.88	0.56	2.48	1.05	1.52
JC-30	0.87	0.87	0.62	1.64	0.94	1.05
KA-5	0.84	0.86	0.57	2.39	0.94	1.33
KB-14	0.82	0.83	0.54	2.47	0.93	1.40
KB-17	0.84	0.82	0.54	2.57	1.04	1.63
LB-19	0.84	0.81	0.58	1.74	0.95	2.18
LC-26	0.85	0.80	0.53	2.54	1.01	1.49
MA-4	0.85	0.81	0.56	2.44	2.57	2.94
MB-15	0.69	0.67	0.36	0.88	0.75	0.42
NB-14	0.79	0.75	0.47	1.52	0.84	0.78
NB-18	0.83	0.86	0.56	2.52	1.00	1.46
PA-7	0.84	0.89	0.61	2.55	0.95	1.54
PB-12	0.85	0.83	0.56	2.59	1.03	1.57
PB-13	0.86	0.89	0.68	2.63	1.01	1.54
QC-24	0.81	0.80	0.51	1.16	0.88	0.45
QC-31	0.76	0.83	0.49	2.04	0.83	0.99
RA-5	0.91	0.91	0.62	2.61	0.94	1.49
RC-25	0.90	0.97	0.68	2.73	1.00	1.77
RC-31	0.76	0.81	0.48	2.54	1.19	1.60
SB-17	0.87	0.87	0.57	2.17	0.94	1.23
SB-18	0.81	0.90	0.58	2.21	0.98	1.34
SC-31	0.81	0.87	0.56	1.72	0.96	1.43

TABLE F11

DAMAGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED

UNDER CONDITION A, 4-BAR SUPPORT FOR RESIDUAL STRENGTH DETERMINATION

TASK III

SPEC. ID.	WIDTH X, in.	LENGTH Y, in.	AREA A, in. ²	WIDTH X, in.	LENGTH Y. in.	AREA A, in.2
	-	N ₀ = 0		N ₁ = 4,00	0	
AB-14	0.70	0.88	0.49	0.93	1.26	0.88
AC-26	0.66	0.75	0.43	1.06	1.02	0.84
BA-7	0.61	0.68	0.35	0.57	0.82	0.39
BC-27	0.68	0.89	0.50	1.22	1.05	0.89
CA-2	0.67	0.81	0.47	1.90	1.23	1.52
CA-9	0.68	0.84	0.46	0.77	1.07	0.65
		$N_{\Omega} = 0$			N ₂ = 800	0
AB-16	0.59	0.70	0.34	0.86	0.90	0.54
AB-19	0.63	0.79	0.43	1.18	1.10	1.01
BA-4	0.62	0.73	0.36	1.10	1.15	1.00
CA-7	0.67	0.83	0.48	0.99	1.05	0.78
CA-10	0.70	0.85	5.00	1.17 1.26	1.08	0.96 1.09
CC-23	0.71	0.88	0.50	-	-	-
		$N_{O} = 0$			N ₃ = 120	00
AA-7	0.68	0.77	0.46	1.24	1.26	1.28
AC-31	0.66	0.80	0.44	1.25	1.50	1.23
BB-11	0.70	0.84	0.49	2.07	1.38	2.22
BB-13	0.59	0.68	0.31	0.59	0.92	0.40
CC-21	0.68	0.83	0.49	1.83	1.48	1.91
CC-26	0.68	0.81	0.43	1.56	1.17	1.32

TABLE F12

DAMAGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED

UNDER CONDITION B, R = -0.3 FOR RESIDUAL STRENGTH DETERMINATION - TASK III

					_	
SPEC. ID.	WIDTH X, in.	LENGTH Y, in.	AREA A, in. ²	WIDTH X, in.	LENGTH Y. in.	AREA A, in. ²
		N ₀ = 0			$N_1 = 4,00$	00
AB-12	0.70	0.84	0.50	0.70	1.30	0.68
AC-25	0.68	0.83	0.46	0.75	1.24	0.71
BC-22	0.69	0.86	0.46	0.70	1.19	0.63
BC-25	0.64	0.73	0.40	0.64	1.25	0.67
CB-16	0.57	0.67	0.31	0.57	0.99	0.48
CC-28	0.70	0.85	0.48	0.69	1.26	0.65
		$N_{\dot{O}} = 0$			$N_2 = 40,0$	000
AA-10	0.69	0.86	0.45	0.70	1.81	0.88
AB-20	0.59	0.71	0.36	0.64	1.59	0.73
BB-15	0.67	0.86	0.46	0.72	1.65	0.83
BB-19	0.68	0.80	0.45	0.72	1.66	0.86
CA-3	0.68	0.89	0.51	0.72	1.88	1.02
CB-13	0.68	0.87	0.50	0.72	1.73	0.91
		$N_{o} = 0$			$N_3 = 250M$	ς
AB-15	0.70	0.86	0.48	0.70	2.13	1.08
AC-24	0.67	0.88	0.51	0.72	2.14	1.10
BA-10	0.68	0.85	0.50	0.70 0.68	2.21 2.19	1.07 1.07
BC-31	0.68	0.89	0.49	0.72	2.00	0.93
CB-11	0.69	0.81	0.47	0.68	1.84	0.94
CB-15	0.71	0.86	0.50	0.68	1.99	0.98

TABLE F13

DAMAGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED UNDER CONDITION C, 180°F FOR RESIDUAL STRENGTH DETERMINATION - TASK III

SPEC.	WIDTH X, in.	LENGTH Y, in.	AREA A, in. ²	WIDTH X, in.	LENGTH Y. in.	AREA A, in.2
		N ₀ = 0			N ₁ = 50	
AA-3	0.68	0.87	0.47	0.88	0.91	0.58
AC-23	0.70	0.81	0.48	1.05	0.81	0.63
BB-20	0.66	0.84	0.45	0.68	0.88	0.47
BC-28	0.69	0.89	0.47	0.75	0.90	0.50
CB-14	0.69	0.80	0.48	0.72	0.91	0.54
CB-19	0.57	0.69	0.31	0.62	0.71	0.36
		$N_{o} = 0$			$N_2 = 300$	
AA-5	0.63	0.84	0.42	0.95	0.86	0.64
AB-13	0.68	0.90	0.49	0.70	0.93	0.56
BB-14	0.69	0.90	0.48	0.90	0.90	0.94
BB-17	0.66	0.79	0.39	0.68	0.88	0.48
CA-5	0.70	0.81	0.46	1.27	0.93	0.92
CC-30	0.67	0.86	0.52	1.08	0.95	0.78
		$N_{O} = 0$			N ₃ = 1000	
AA-6	0.63	0.75	0.39	1.49	1.04	1.14
AC-30	0.56	0.68	0.31	0.81	0.79	0.50
BA-9	0.67	0.88	0.47	1.01	0.83	0.74
BB-16	0.62	0.79	0.32	0.66	0.79	0.41
CB-18	0.60	0.77	0.36	0.80	0.87	0.48
CB-20	0.61	0.77	0.41	0.87	0.77	0.50

TABLE F14

DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED

UNDER CONDITION A, 4-BAR SUPPORT FOR RESIDUAL STRENGTH DETERMINATION

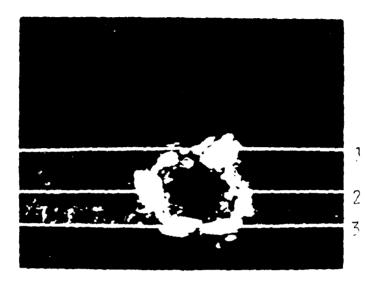
TASK III

SPEC. ID.	WIDTH X, in.	LENGTH Y, in.	AREA A, in.2	WIDTH X, in.	LENGTH Y. in.	AREA A, in. ²	
		N _o = 0)		N ₁ - 1,000		
DB-13	0.77	0.79	0.46	0.97	0.86	0.58	
DC-26	0.83	0.87	0.59	1.22	0.86	0.69	
EA-1	0.75	0.83	0.48	0.91	0.85	0.58	
EB-22	0.80	0.77	0.47	1.17	0.84	0.66	
FC-23	0.75	0.75	0.44	1.08	0.74	0.58	
FC-28	0.82	0.74	0.46	0.92	0.79	0.60	
		$N_{O} = 0$)		N ₂ = 10,000)	
DB-18	0.68	0.58	0.31	0.99	0.53	0.40	
DC-23	0.77	0.81	0.49	2.87	1.08	1.36	
EA-7	0.80	0.75	0.52	2.28	0.87	1.10	
EB-17	0.82	0.82	0.52	1.52	0.94	0.89	
FA-10	0.77	0.78	0.51	1.68	0.90	0.98	
FB-14	0.83	0.88	0.58	1.36	0.92	0.98	
		N _o = 0)		N ₃ = 20,000)	
DA-3	0.81	0.82	0.51	1.02	0.91	0.67	
DB-11	0.75	0.74	0.44	1.59	0.96	1.08	
EB-20	0.79	0.73	0.48	1.39	0.97	1.00	
EC-23	0.73	0.75	0.41	1.03	0.83	0.63	
FA-1	0.78	0.74	0.47	1.69	0.97	1.10	
FA-2	0.77	0.72	0.47	2.59	0.99	1.48	

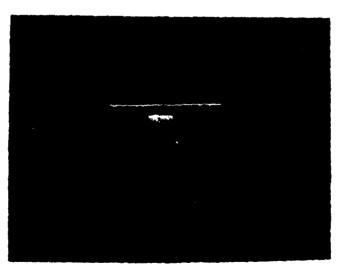
TABLE F15

DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED UNDER CONDITION B, R = -0.3 FOR RESIDUAL STRENGTH DETERMINATION - TASK III

SPEC. ID.	WIDTH X, in.	LENGTH Y, in.	AREA A, in.2	WIDTH X, in.	LENGTH Y. in.	AREA A, in. ²
N = 0					N ₁ = 20,	000
EA-6	0.84	0.90	0.60	0.92	0.93	0.63
EC-24	0.68	0.59	0.34	0.70	0.57	0.33
DA-5	0.82	0.95	0.66	0.85	1.03	0.73
DB-19	0.73	0.78	0.44	0.76	0.83	0.47
FA-9	0.84	0.85	0.54	0.83	0.81	0.58
FC-27	0.72	0.72	0.43	0.85	0.78	0.50
		N ₀ =0			N ₂ =250K	
DA-8	0.79	0.77	0.47	1.06	1.10	0.94
DC-30	0.83	0.85	0.58	0.90	1.23	0.84
EA-9	0.79	0.78	0.49	0.88	1.06	0.66
EB-21	0.72	0.74	0.44	0.80	0.91	0.52
FA-7	0.77	0.83	0.50	0.85	0.99	0.64
FC-29	0.80	0.84	0.54	0.95	1.08	0.80
		N ₀ =0			N ₃ =10 ⁶	
DB-14	0.81	0.79	0.52	0.97	1.14	0.90
DB-15	0.77	0.79	0.48	1.10	1.94	1.14
EB-16	0.81	0.88	0.56	0.95	1.22	0.92
EC-31	0.75	0.71	0.44	1.02	1.16	0.98
FB-13	0.77	0.78	0.49	0.84	1.32	1.00
FB-20	0.79	0.84	0.56	0.99	2.53	1.50

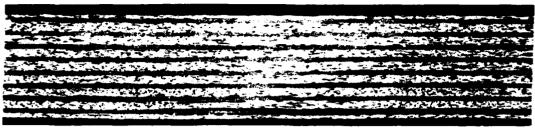

TABLE F16

DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED UNDER CONDITION C, 180°F FOR RESIDUAL STRENGTH DETERMINATION - TASK III

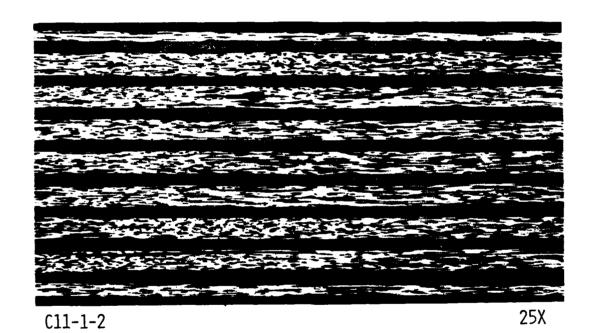

SPEC.	WIDTH X, in.	LENGTH Y, in.	AREA A, in. ²	WIDTH X, in.	LENGTH Y. in.	AREA A, in. ²
		$N_0 = 0$			N ₁ = 1,000	1
DB-12	0.83	0.83	0.54	1.53	0.90	0.93
DE-22	0.77	0.81	0.44	0.91	0.91	0.61
EB-12	0.80	0.78	0.50	1.05	0.88	0.65
EB-19	9.72	0.77	0.44	0.99	0.83	0.65
FB-15	0.73	0.74	0.44	0.94	0.82	0.58
FC-21	0.71	0.77	0.40	0.85	0.72	0.47
		N°=0			N ₂ =4000	
DA-1	0.74	0.70	0.44	1.23	0.87	0.86
DB-20	0.77	0.77	0.44	1.40	1.01	0.97
EC-28	0.74	0.85	0.50	1.08	0.86	0.73
EC-29	0.80	0.83	0.54	1.42	0.98	0.92
FA-5	0.83	0.84	0.52	0.95	0.95	0.68
FA-6	0.72	0.77	0.46	0.98	0.76	0.51
		N ₀ =0			N ₃ =8000	
DA-10	0.83	0.84	0.57	3.38	1.06	2.29
DB-16	0.83	0.87	0.56	1.26	1.12	1.12
EA-5	0.88	0.84	0.58	1.61	1.04	1.07
EC-27	0.86	0.86	0.59	3.45	1.12	2.47
FB-11	0.83	0.88	0.58	1.12	1.06	0.84

APPENDIX

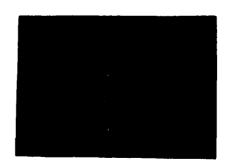
Damage as Determined by
Metallographic Sectioning



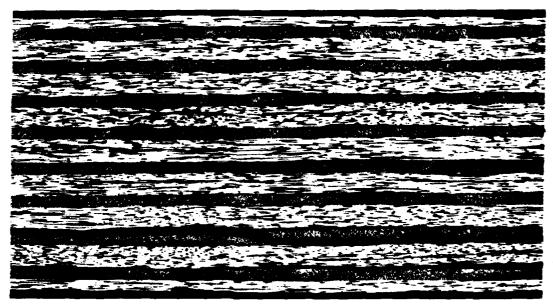
C-SCAN



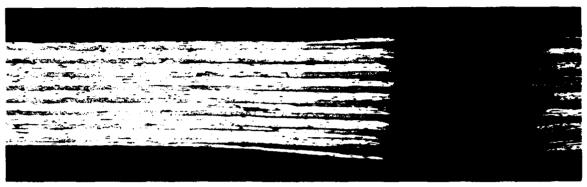
CUMULATIVE B-SCAN


24-PLY SPEC: CB-11 $N_1 = 4,000$ CYCLES

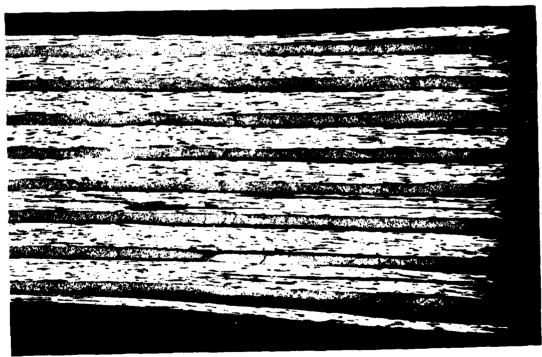
C11-1-1 10X


LOCATION: 1.12 IN. DAMAGE LENGTH: 0.628

B-SCAN AT 1.15 IN.

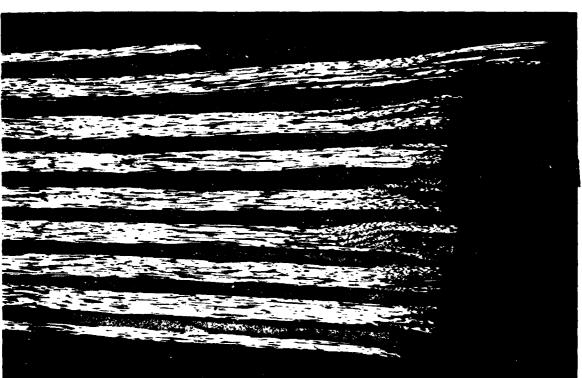


C11-2-1 10X



C11-2-2 25X

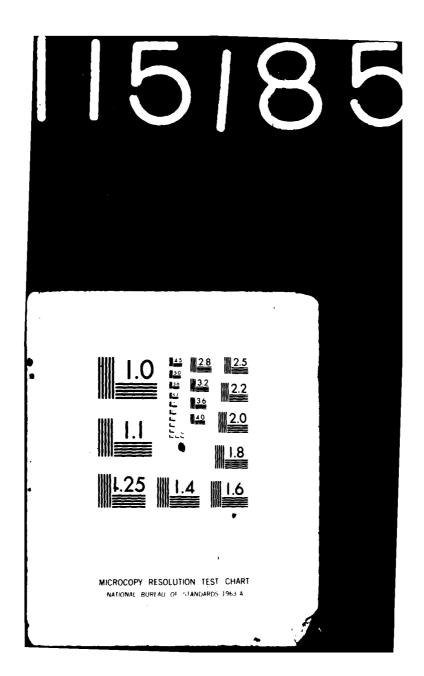
LOCATION: 1.22 IN. DAMAGE LENGTH: 0.704

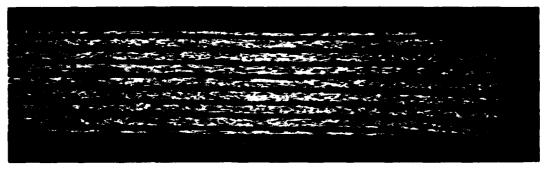

C11-3-1A 10X

C11-3-2A 25X

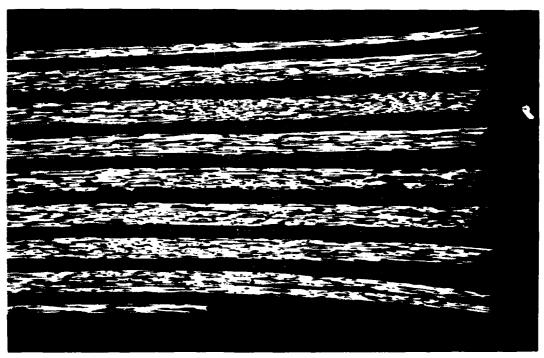
LOCATION: 1.32 IN. DAMAGE LENGTH: 0.757

C11-3-2B 257

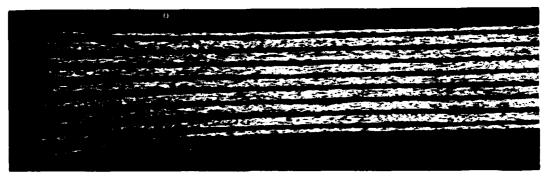

LOCATION: 1.32 IN. DAMAGE LENGTH: 0.757


LOCKMEED-CALIFORMIA CO BURBANK

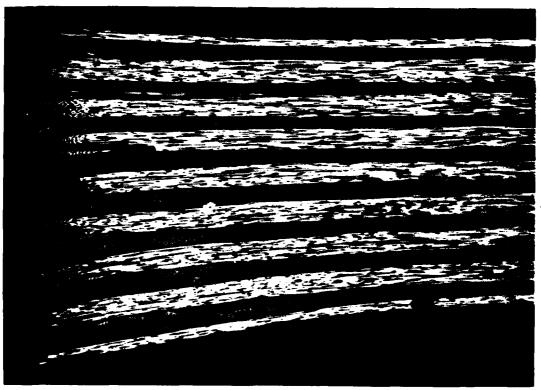
ADVANCED RESIDUAL STREMSTH DESKADATION RATE MODELING FOR ADVANCE—ETC(U)
JUL 61 K H LAURAITIS, J T RYDER, D E PETTIT F38615-77-C-3664
LR-28366-19


AFMAL-TR-79-3695-VOL-3

NL AD-A115 105 UNCLASSIFIED 0 \boldsymbol{z} -1

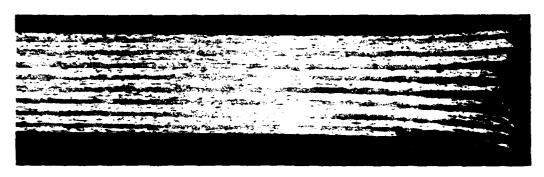


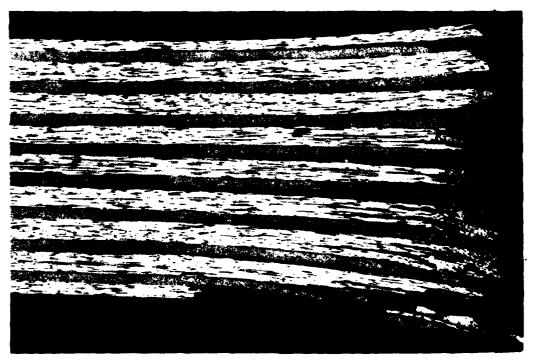
C11-4-1A J.OX



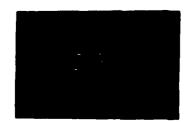
C11-4-2A 25X

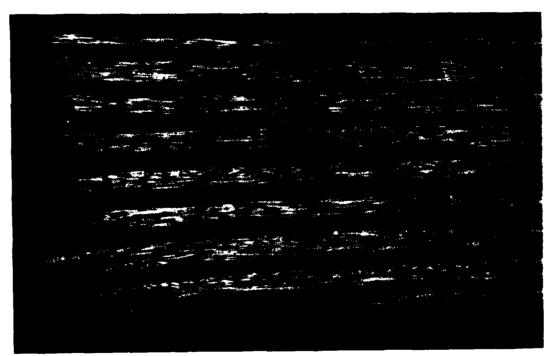
LOCATION: 1.42 IN. DAMAGE LENGTH: 0.865


C11-4-1B 10X


C11-4-2B 25X

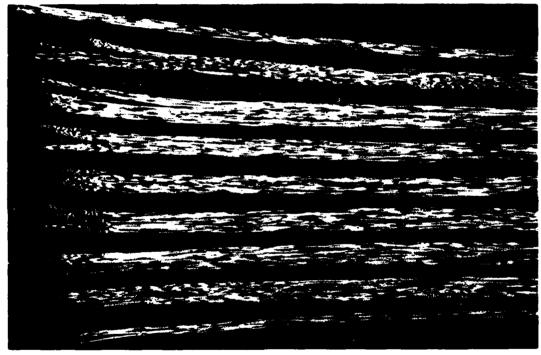
LOCATION: 1.42 IN. DAMAGE LENGTH: 0.865


LOCATION: 1.52 IN. DAMAGE LENGTH: 0.903


C11-5-2A 25X

B-SCAN AT CENTER

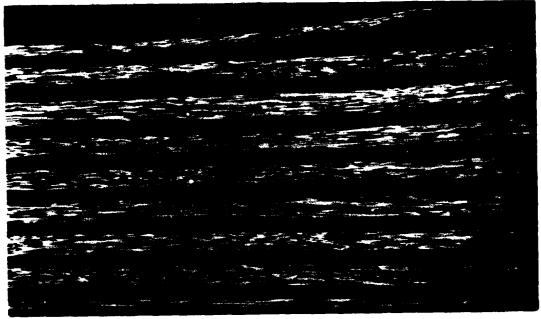
C11-5-1B 10X



C11-5-2B 25X

LOCATION: 1.52 IN. DAMAGE LENGTH: 0.903

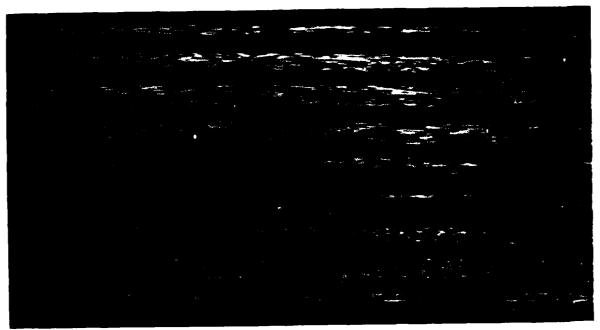
C11-6-1A 10X



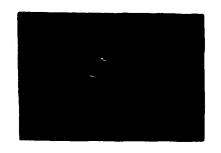
C11-6-2A 25X

LOCATION: 1.62 IN. DAMAGE LENGTH: 0.867

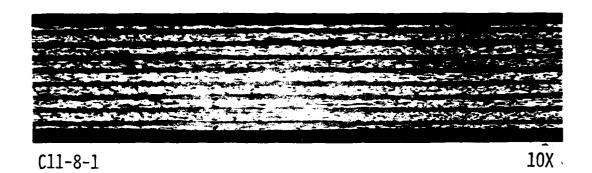
C11-6-1B 10X

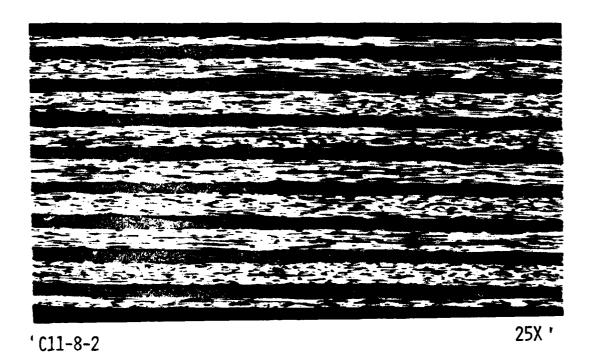


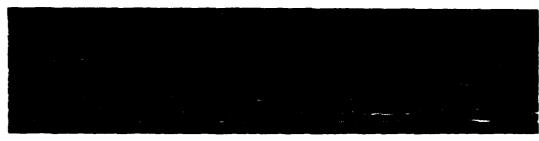
C11-6-2B 25X


LOCATION: 1.62 IN. DAMAGE LENGTH: 0.867

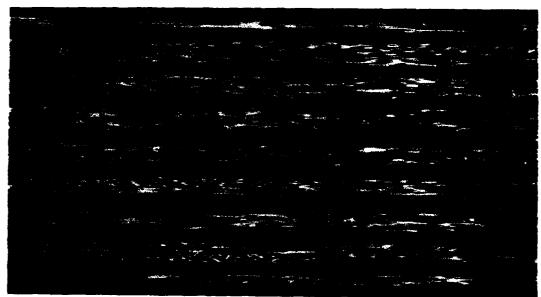
C11-7-1 10X




C-1-7-2 25X

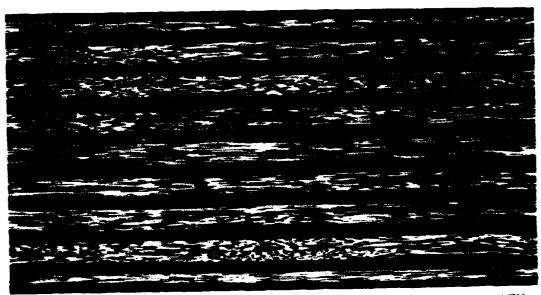

B-SCAN AT 1.78 IN.

LOCATION: 1.72 IN. DAMAGE LENGTH: 0.653



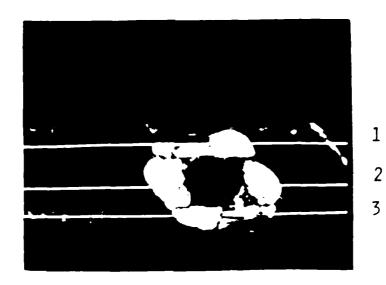
LOCATION: 1.82 IN. DAMAGE LENGTH: 0.290

C11-9-1 10X

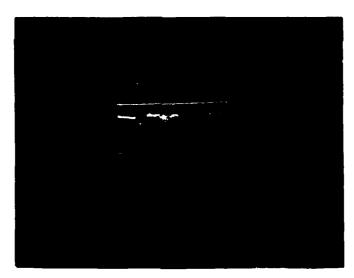


· C11-9-2 25X

LOCATION: 1.92 IN. DAMAGE LENGTH: No DAMAGE

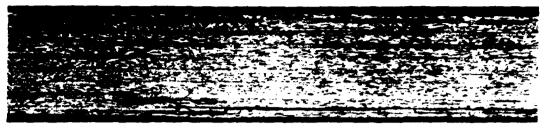


C11-10-1 10X

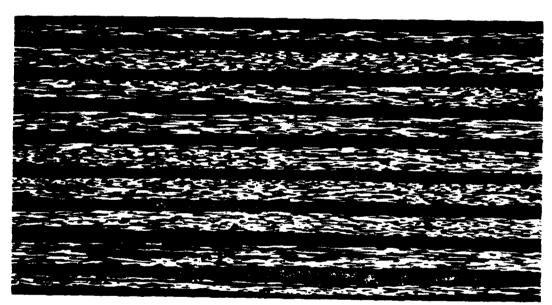


C11-10-2 25X

LOCATION: 2.02 IN. DAMAGE LENGTH: No DAMAGE



C-SCAN


CUMULATIVE E-SCAN

SPEC: D-19 N₃ = 12,363 CYCLES

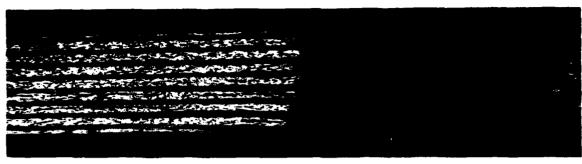
D19-1-1

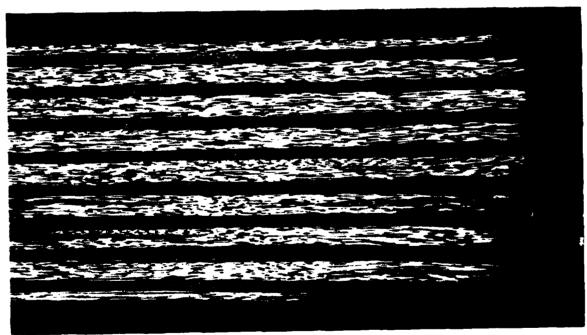
D19-1-2

25x

LOCATION: 1.15 IN. DAMAGE LENGTH: 0.659 IN.

B-SCAN al.12 in.


D19-2-1 10x

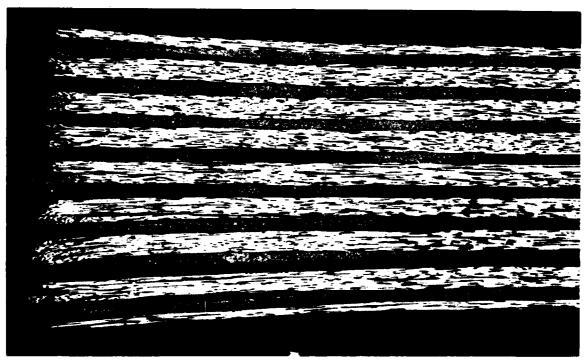

D19-2-2

= 25x

LOCATION: 1.25 IN. DAMAGE LENGTH 0.858 IN.



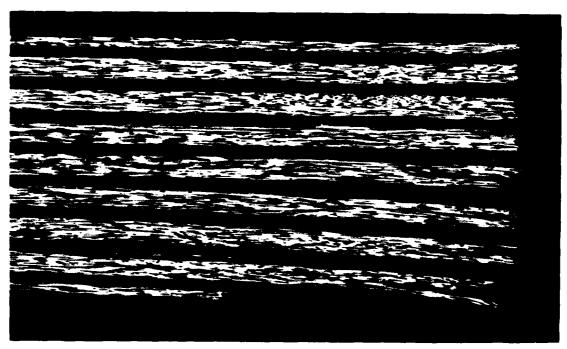
D19-3-1A 10x



D19-3-2A 25x

LOCATION: 1.35 IN. DAMAGE LENGTH 0.908 IN.

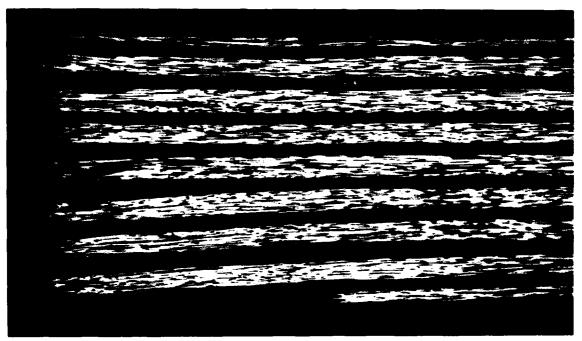
D19-3-1B 10x



D19-3-2B 25x

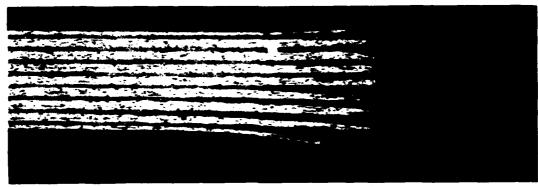
LOCATION: 1.35 IN. DAMAGE LENGTH 0.908 IN.

D19-4-1A 10x

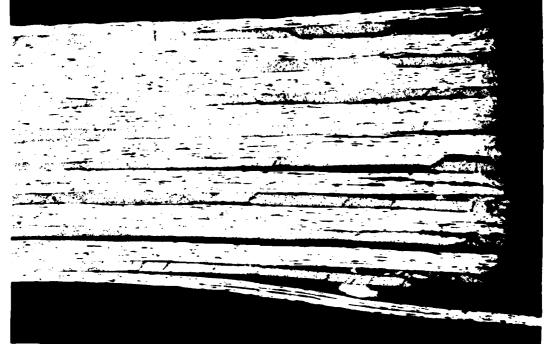


D19-4-2A 25x

LOCATION: 1.45 IN. DAMAGE LENGTH 1.007 IN.



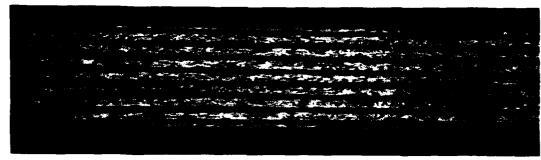
D19-4-1B



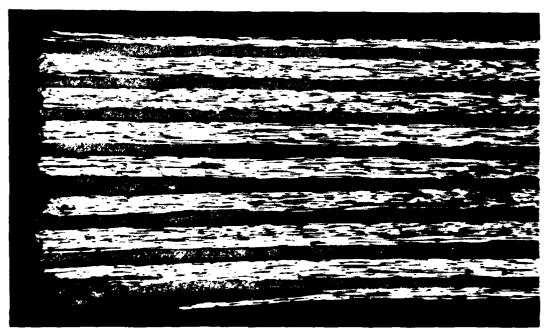
D19-4-2B 25x

LOCATION: 1.45 IN. DAMAGE LENGTH 1.007 IN.

D19-5-1A 10x

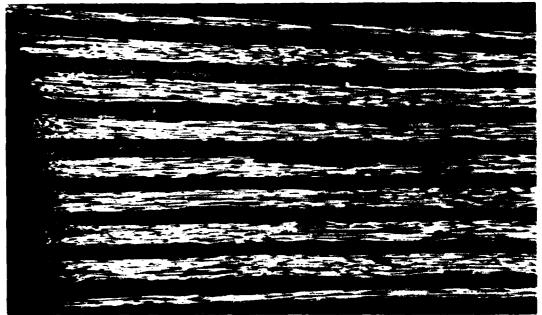


D19-5-2A 25x



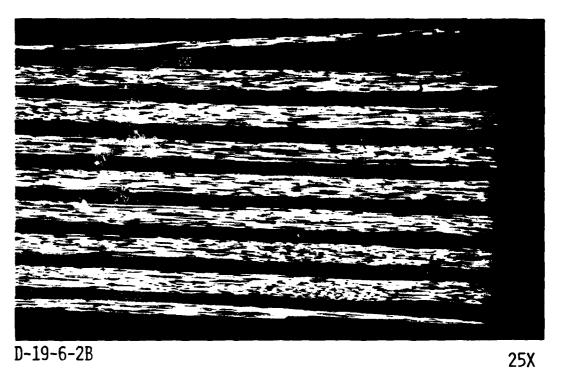
B-SCAN a 1.5 in.

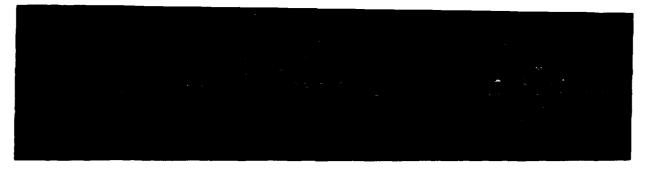
D19-5-1B 10x



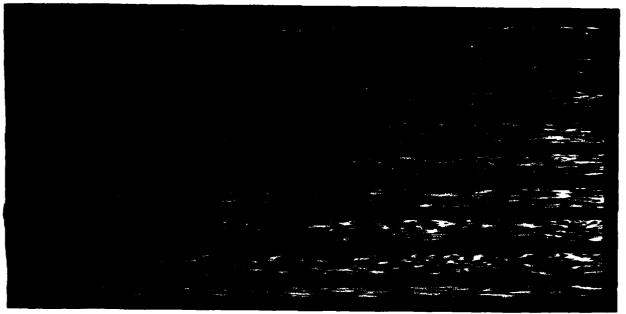
D19-5-2B 25x

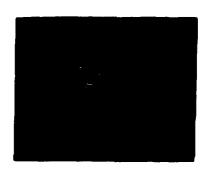
LOCATION: 1.55 IN. DAMAGE LENGTH 0.985 IN.


D19-6-1A 10X

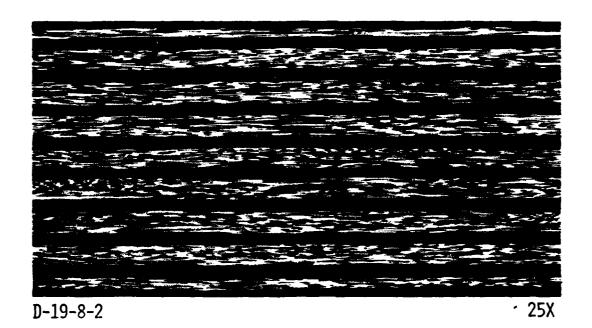

D19-6-2A 25X

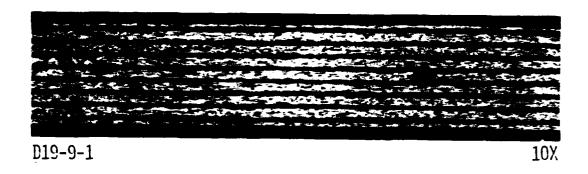
LOCATION: 1.48 IN. DAMAGE LENGTH: 0.918

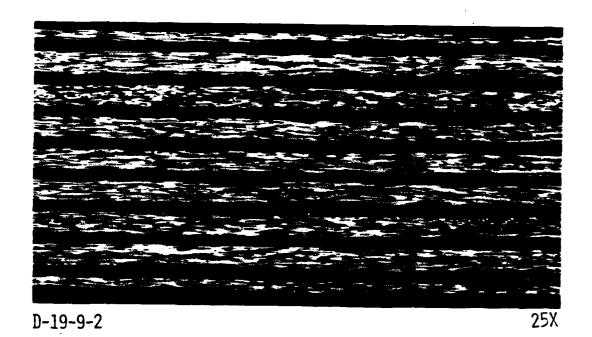


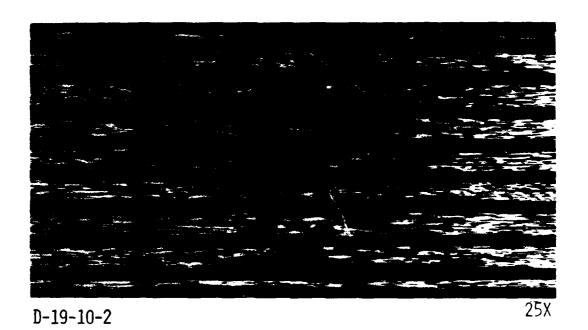

LOCATION: 1.48 IN. DAMAGE LENGTH: 0.918

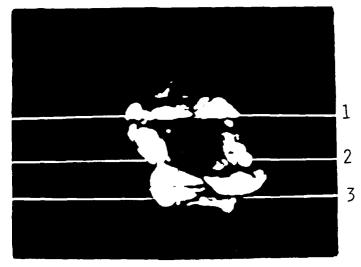
D19-7-1 10X


D19-7-2 25X

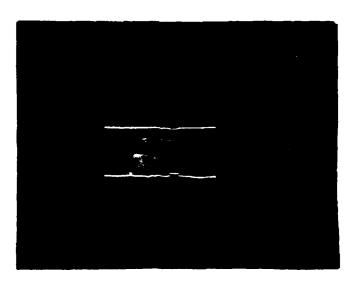

B-SCAN AT 1.78 IN.


LOCATION: 1.75 IN. DAMAGE LENGTH: 0.710


LOCATION: 1.68 IN. DAMAGE LENGTH: 0.933

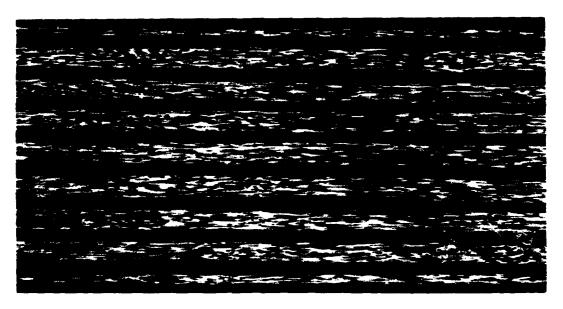


LOCATION: 1.78 IN. DAMAGE LENGTH: 0.888



LOCATION: 1.88 IN. DAMAGE LENGTH: 0.630

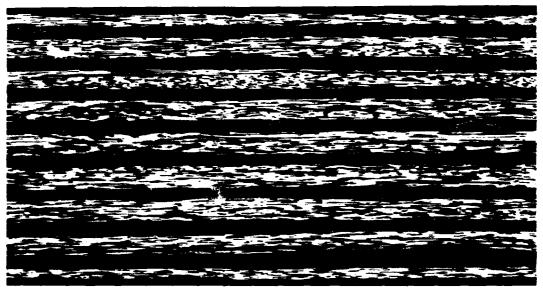
C-SCAN



CUMULATIVE B-SCAN

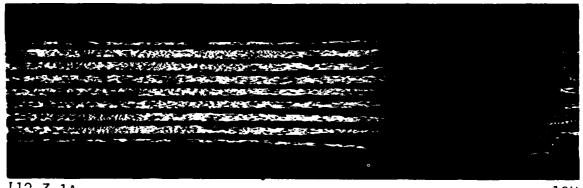
24-PLY SPEC: IB-12 $N_4 = 20,000$ CYCLES.

I12-1-1 10X

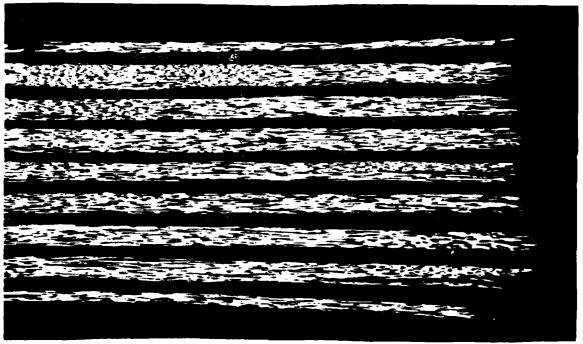


I12-1-2 25X

LOCATION: 1.08 IN. DAMAGE LENGTH: 0.439



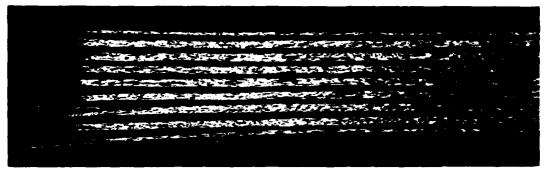
112-2-1 10X



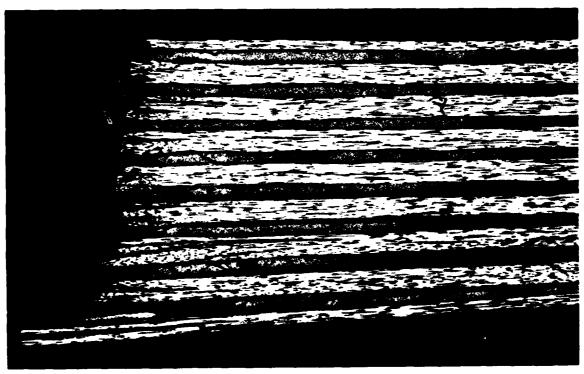
I12-2-2 25X

LOCATION: 1.22IN. DAMAGE LENGTH: 0.704

I12-3-1A



I12-3-2A 25X

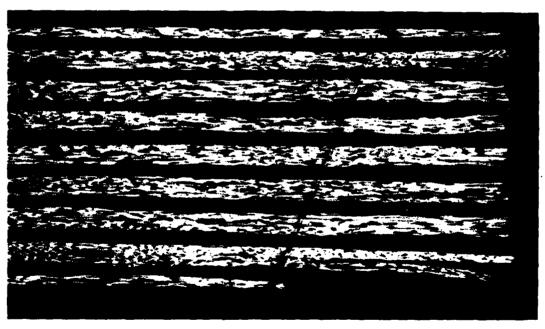


B-SCAN AT 1.23 IN.

LOCATION: 1.28 IN. DAMAGE LENGTH: 0.868

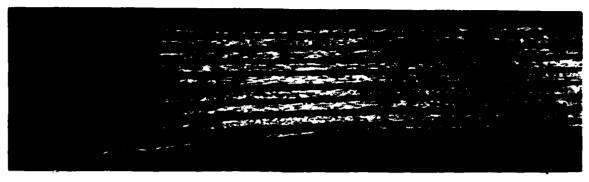


I12-3-1B 30X



112-3-2B 25X

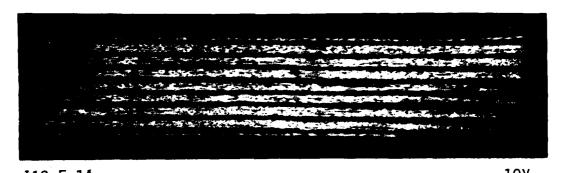
LOCATION: 1.28 IN. DAMAGE LENGTH: 0.868



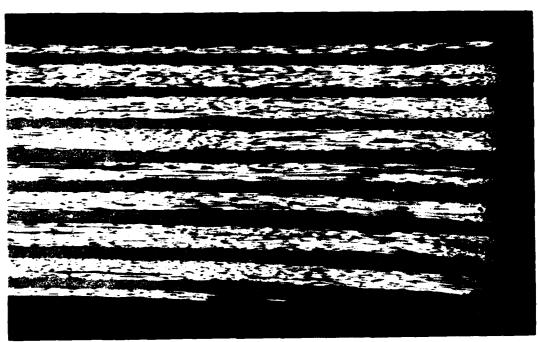
112-4-1A 10X

I12-4-2A 25X

LOCATION: 1.38 IN. DAMAGE LENGTH: 0.856

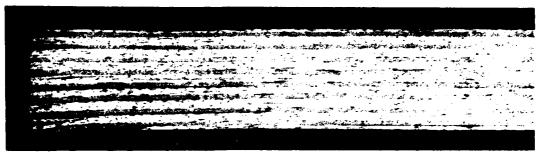


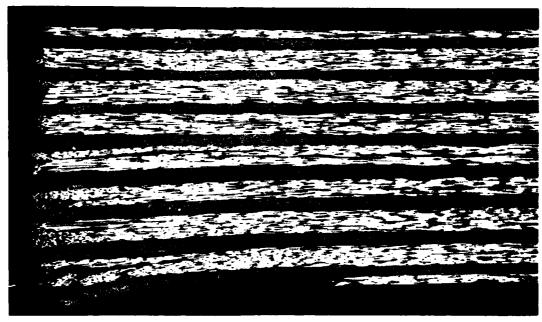
112-4-1B



I12-4-2B 25X

LOCATION: 1.38 IN. DAMAGE LENGTH: 0.856



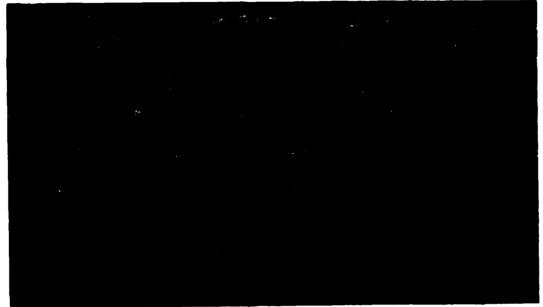


I12-5-2A 25X

LOCATION: 1.48 IN. DAMAGE LENGTH: 0.997



I12-5-1B 10X


I12-5-2B 25X

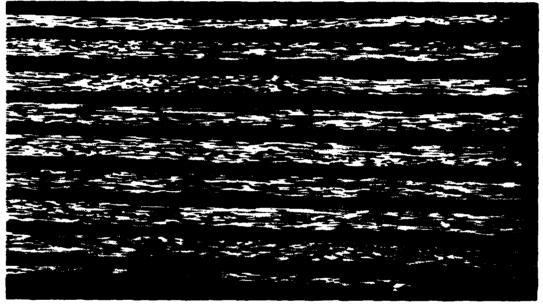
LOCATION: 1.48 IN. DAMAGE LENGTH: 0.997

I12-6-1A

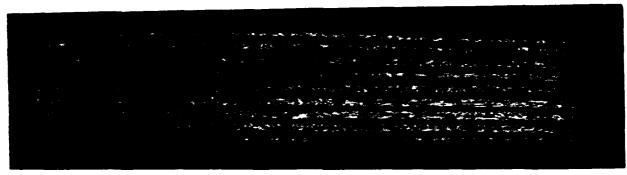
10X

I12-6-2A

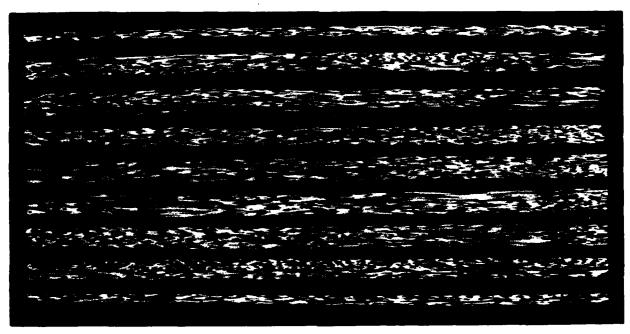
25X


LOCATION: 1.58 IN. DAMAGE LENGTH: 0.869

B-SCAN AT 1.59 IN.

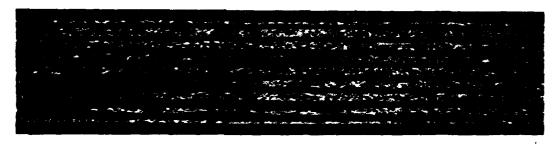


I12-6-1B 10X

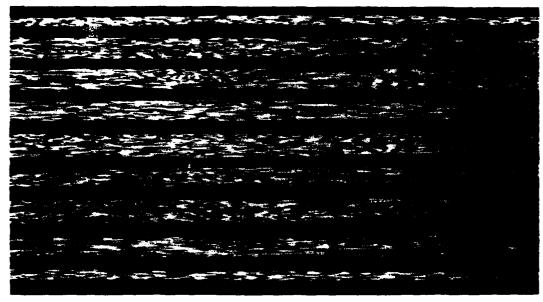


I12-6-2B 25X

LOCATION: 1.58 IN. DAMAGE LENGTH: 0.869



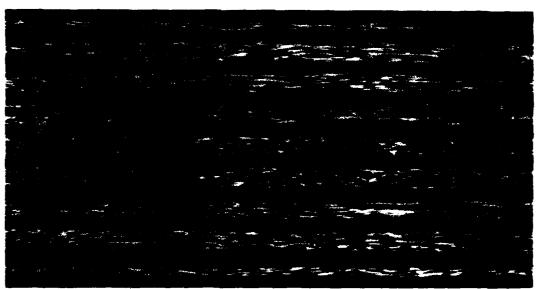
I12-7-1



I12-7-2 25X

LOCATION: 1.68 IN. DAMAGE LENGTH: 0.973

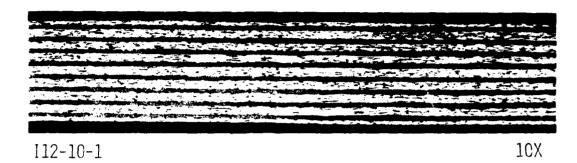
I12-8-1 10X



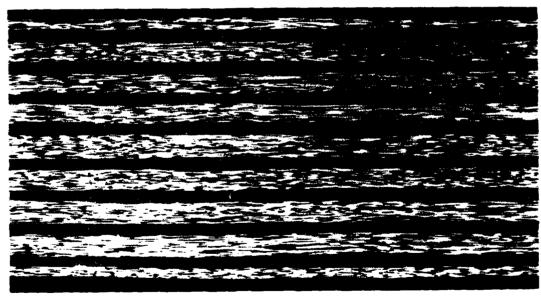
I12-8-2 25X

LOCATION: 1.78 IN. DAMAGE LENGTH: 0.907

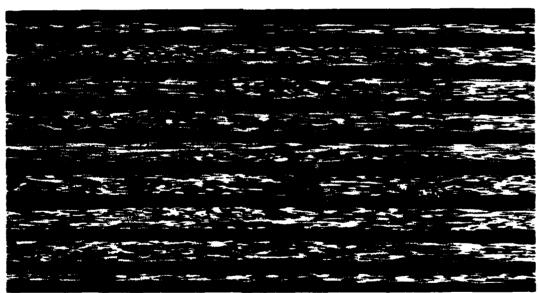
I12-9-1 10X



I12-9⊦2 25X

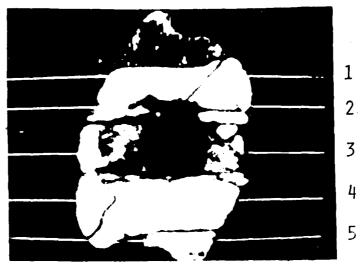

LOCATION: 1.88 IN. DAMAGE LENGTH: 0.702

B-SCAN AT 1.88 IN.

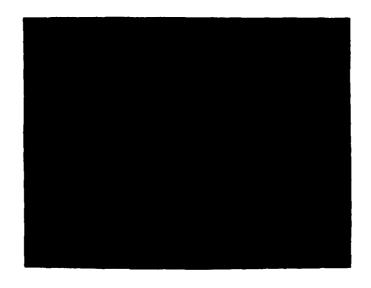


I12-10-2 25X

LOCATION: 1.98 IN. DAMAGE LENGTH: 0.204

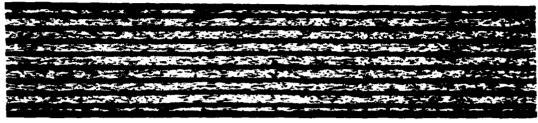


I12-11-1 10X

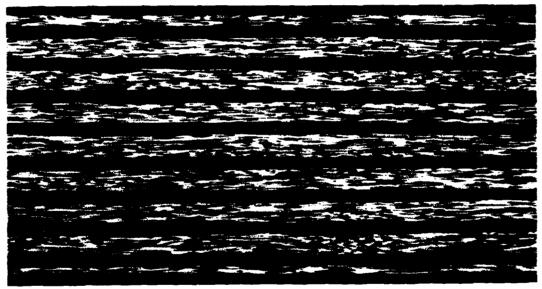


I12-11-2 25X

LOCATION: 2.08 IN. DAMAGE LENGTH: No DAMAGE



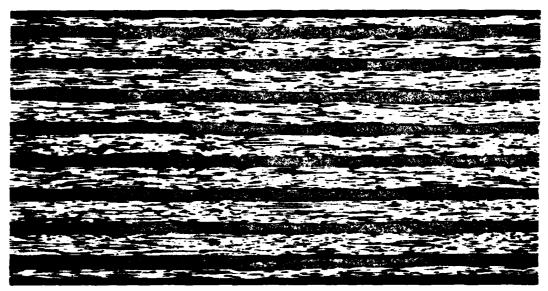
C-SCAN



CUMULATIVE B-SCAN

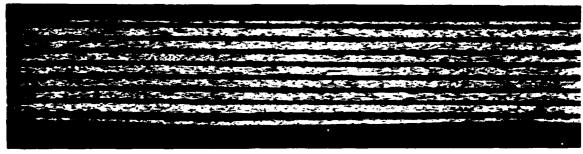
24-PLY SPEC: EC-30 N₅ = 40,000

E30-1-1 10X

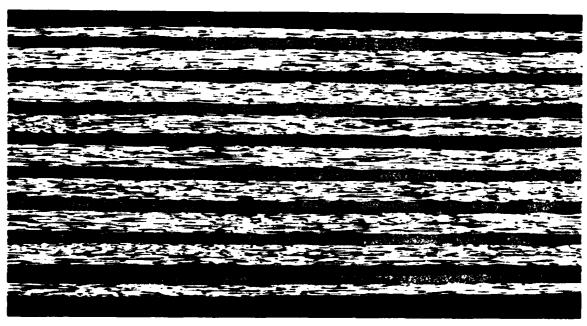


E30-1-2 25X

LOCATION: 0.45 IN. DAMAGE LENGTH: No CRACKS



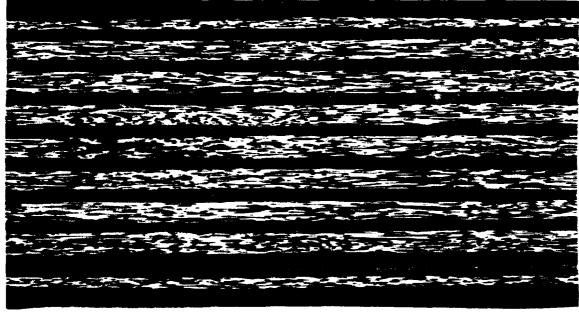
E30-2-1 10X



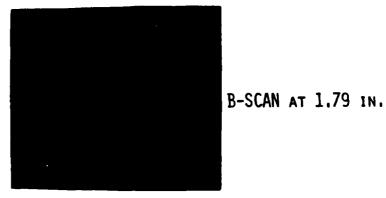
E30-2-2 25X

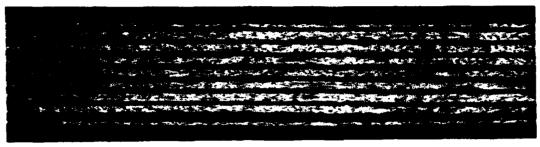
LOCATION: 0.55 IN. DAMAGE LENGTH: 0.326

E30-3-1 10X



E30-3-2 25X

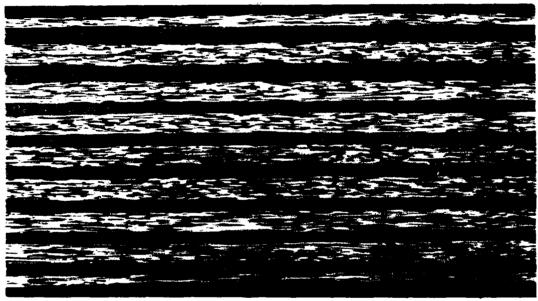

LOCATION 0.65 IN. DAMAGE LENGTH: 0.616


E30-4-1 10X

E30-4-2 25X

LOCATION: 0.75 IN. DAMAGE LENGTH: 0.766

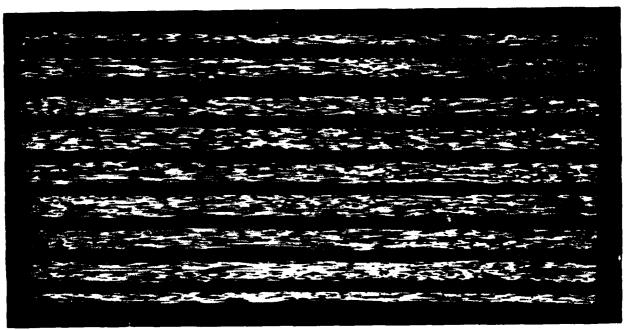
E30-5-1. 10X



E30-5-2 25X

LOCATION: 0.85 IN. DAMAGE LENGTH: 0.822

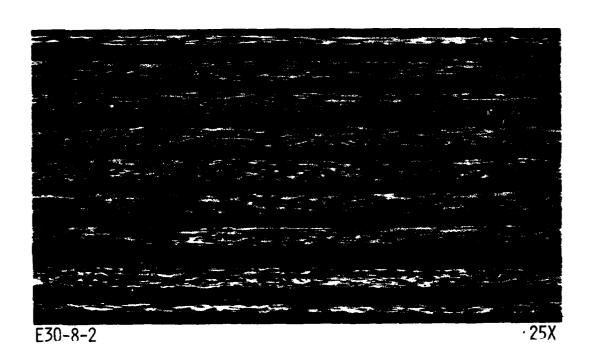
E30-6-1 10X



E30-6-2 25X

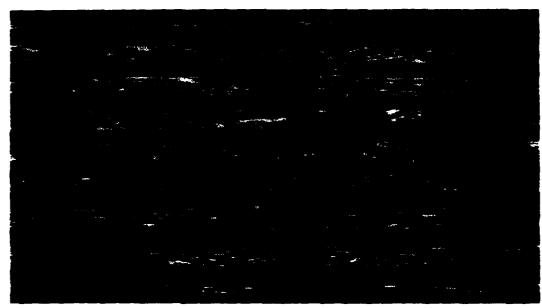
LOCATION: 0.95 in. DAMAGE LENGTH: 0.957



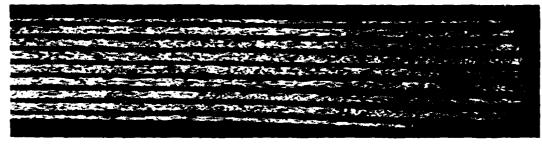

E30-7-1 10X

E30-7-2 25X

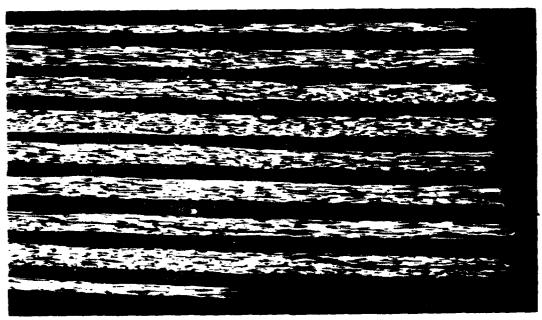
LOCATION: 1.05 IN. DAMAGE LENGTH: 1.192



LOCATION: 1.15 IN. DAMAGE LENGTH: 1.138

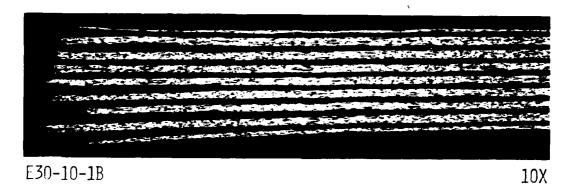


E30-9-1 10X

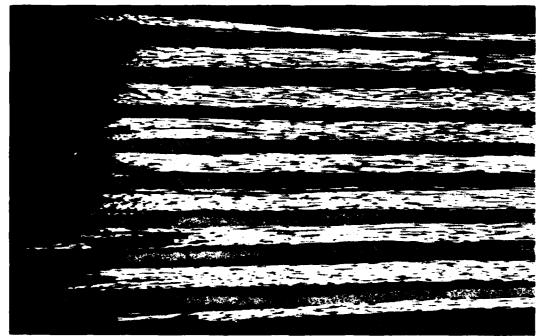


E30-9-2 25X

LOCATION: 1.25 IN. DAMAGE LENGTH: 1.259

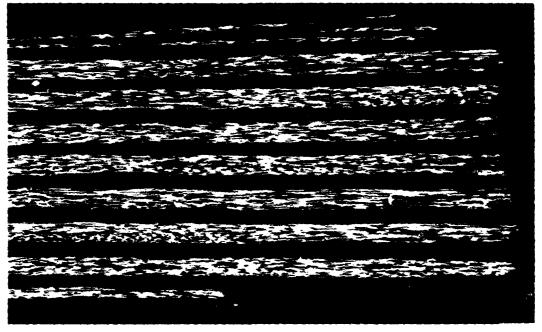


E30-10-1A 10X



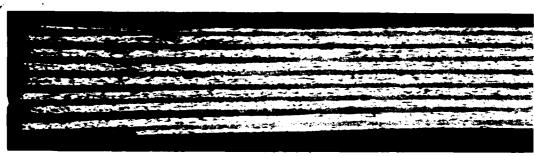
E30-10-1A 25X

LOCATION: 1.35 IN. DAMAGE LENGTH: 1.200

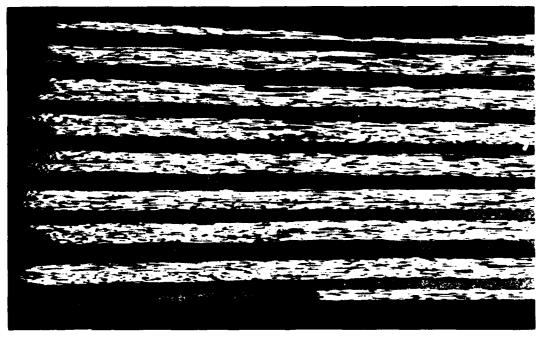


E30-10-2R 25X

LOCATION: 1.35 IN. DAMAGE LENGTH: 1.200

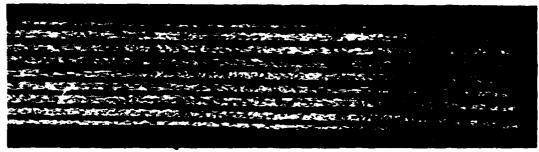


E30-11-1A 10X

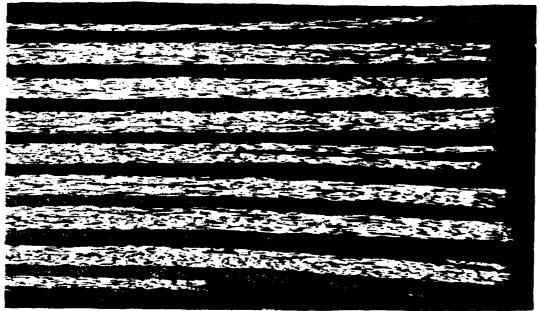


E30-11-2A 25X

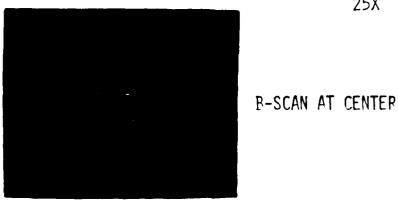
LOCATION: 1.45 IN. DAMAGE LENGTH: 1.277



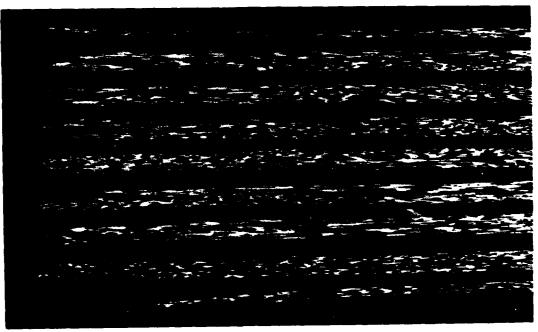
E30-11-1B 10X



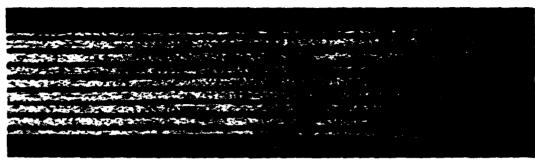
E30-11-2B 25X


LOCATION: 1.45 IN. DAMAGE LENGTH: 1.277

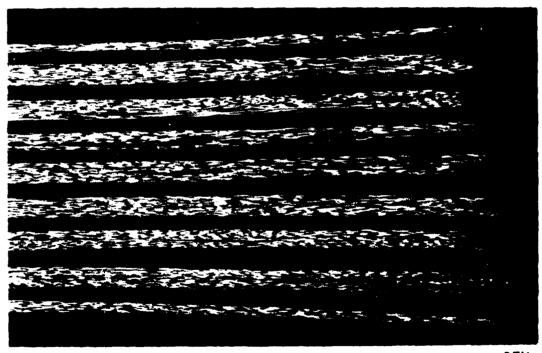

E3C-12-1A 10X


E30-12-1A 25X

LOCATION: 1.55 IN. DAMAGE LENGTH: 1.317



E30-12-2B 10X

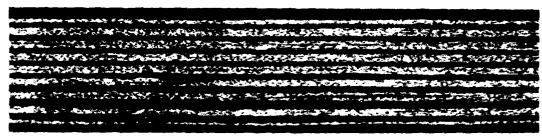


E30-12-2B 25X

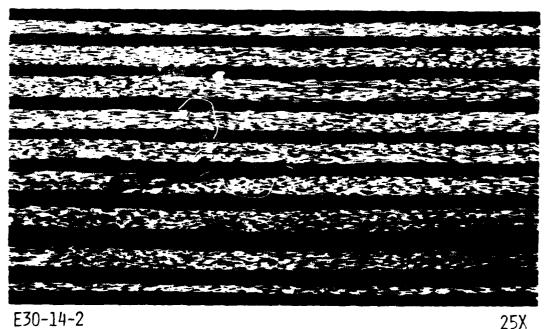
LOCATION: 1.55 IN. DAMAGE LENGTH: 1.317

E30-13-1B 25X

LOCATION: 1.65 IN. DAMAGE LENGTH: 1.285

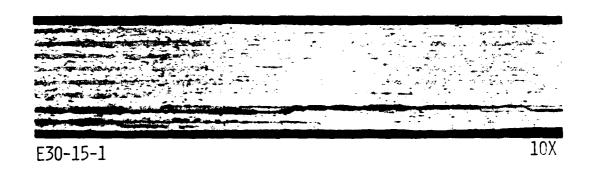


E30-13-1B 10X



E30-13-2B 25X

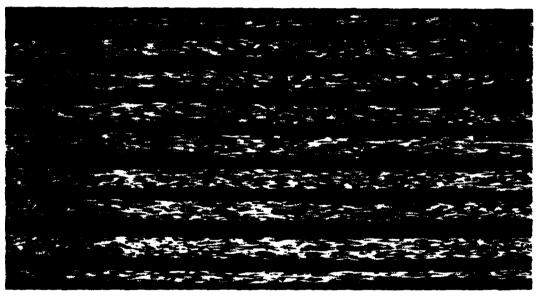
LOCATION: 1.65 IN. DAMAGE LENGTH: 1,285



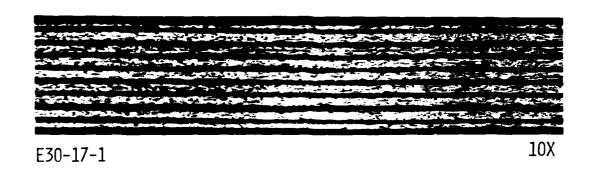
E30-14-1 10X

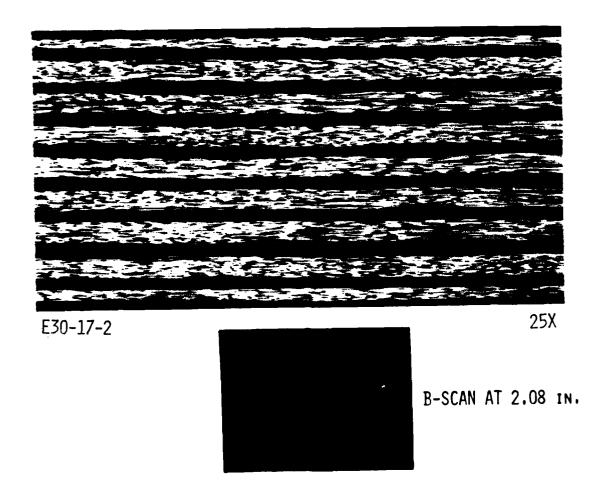
25X

LOCATION: 1.75 IN. DAMAGE LENGTH: 1.260



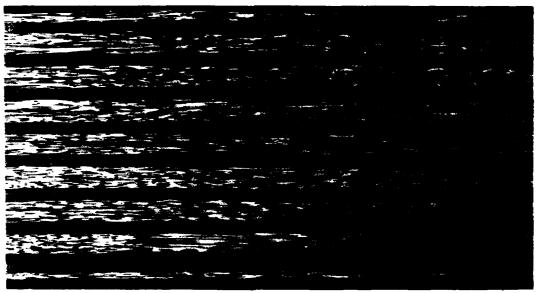
LOCATION: 1.85 IN. DAMAGE LENGTH: 1.297



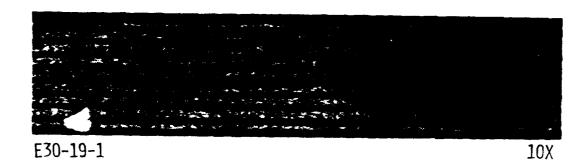

E30-16-1 10X

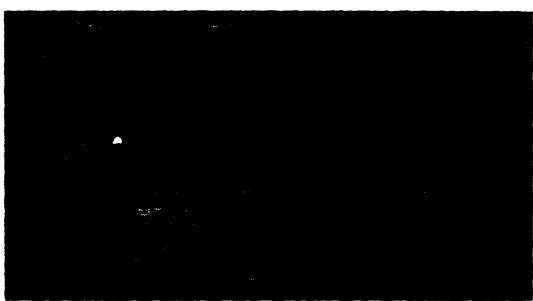
E30-16-2 25X

LOCATION: 1.95 IN. DAMAGE LENGTH: 1.205



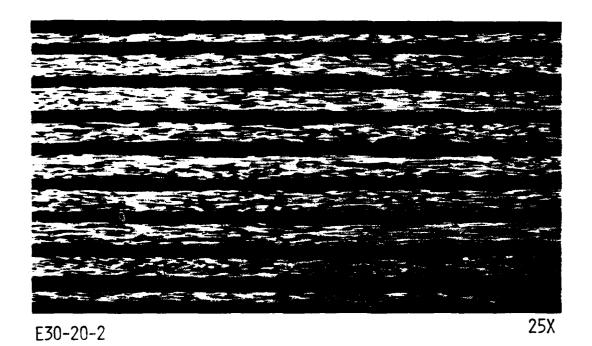
LOCATION: 2.05 IN. DAMAGE LENGTH: 1.130




E30-18-1 10X

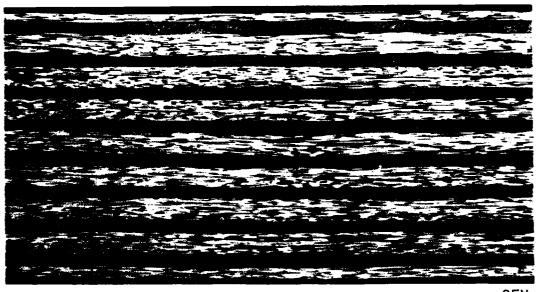
E30-18-2 25X

LOCATION: 2.15 IN. DAMAGE LENGTH: 1.112



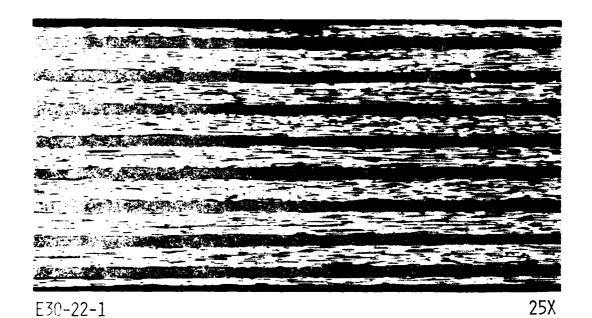

E30-19-2 25X

LOCATION: 2.25 IN. DAMAGE LENGTH: 0.907

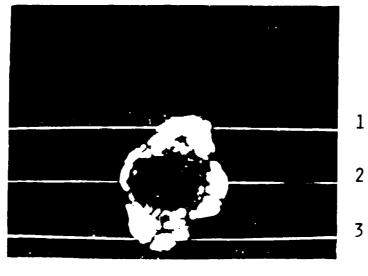


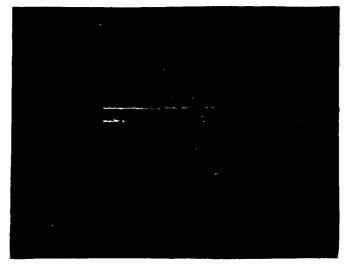
LOCATION: 2.35 IN. DAMAGE LENGTH: 0.571

E30-21-1 10X

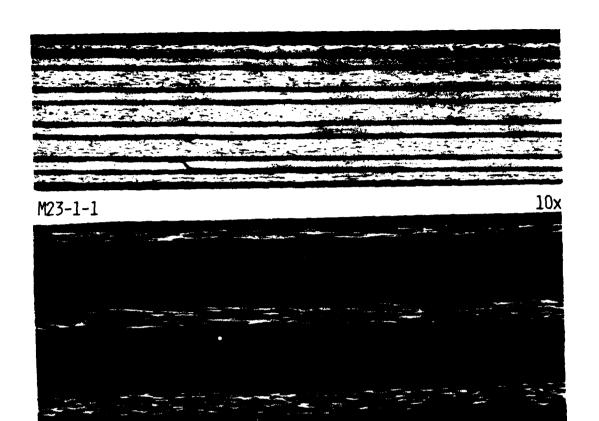


E30-21-2 25X

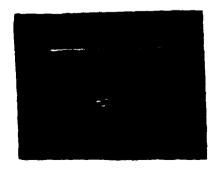

LOCATION: 2.45 IN. DAMAGE LENGTH: 0.453


E30-22-1 10X

LOCATION: 2.55 IN. DAMAGE LENGTH: No DAMAGE



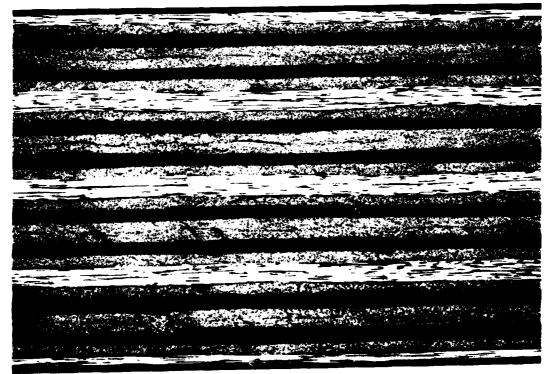
C-SCAN


CUMULATIVE B-SCAN

32-PLY SPEC: MC-23 $N_1 = 1,000$ CYCLES

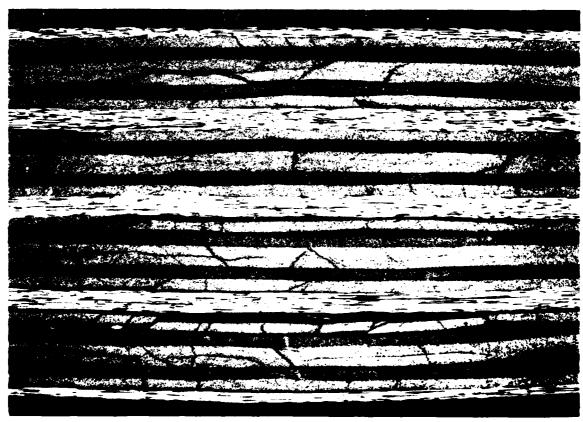


M23-1-2 25x


LOCATION: 1.03 IN. DAMAGE LENGTH: 0.308

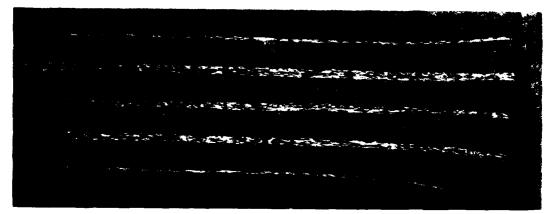
B-SCAN AT 1.03 IN.

M23-2-1

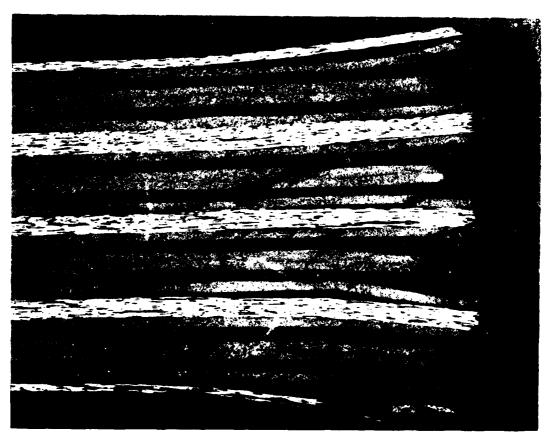


M23-2-2 25x

LOCATION: 1.13 DAMAGE LENGTH 0.479 IN.

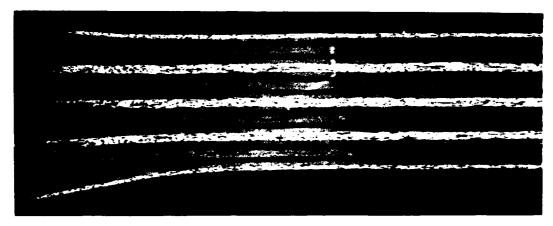


M23-3-1

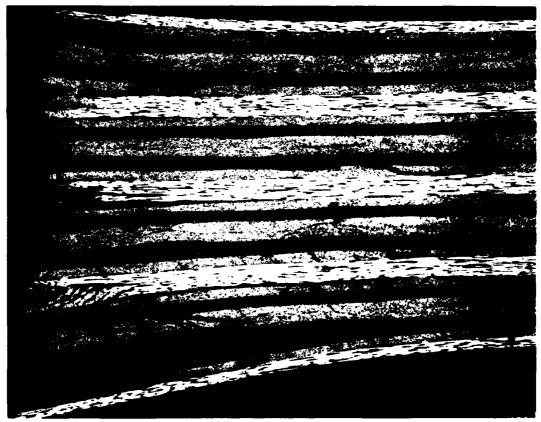


M23-3-2 25x

LOCATION: 1.23 IN. DAMAGE LENGTH: 0.619

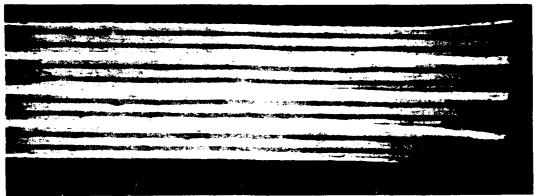


M23-4-1A 10x



M23-4-2A 25×

LOCATION: 1.33 IN. DAMAGE LENGTH: 0.771

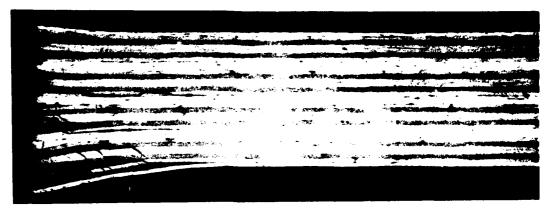


M23-4-1B 10x

M23-4-2B 25x

LOCATION: 1.33 IN. DAMAGE LENGTH: 0.771

M23-5-1A 10x

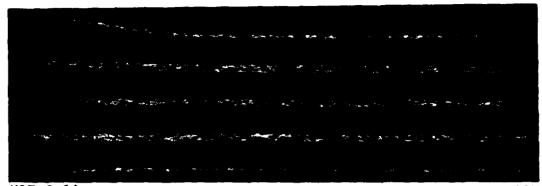

M23-5-2A
LOCATION: 1.43 IN. DAMAGE LENGTH: 0.781 IN.

25x

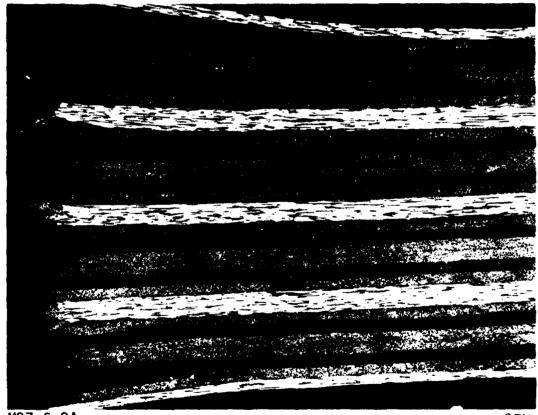
B-SCAN

a 1.5 in.

G81

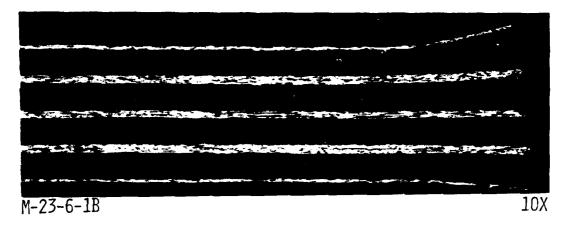


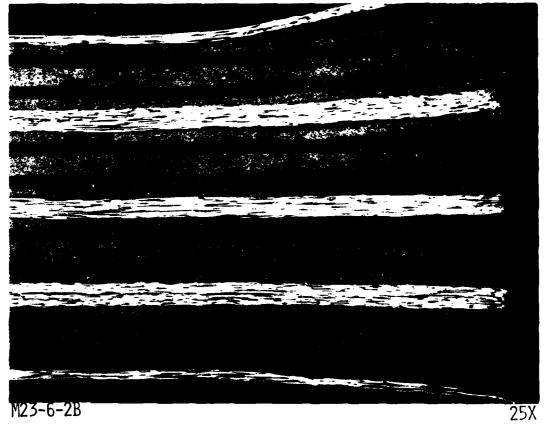
M23-5-1B 10x

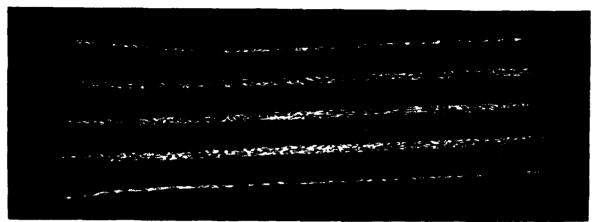


M23-5-2B 25x

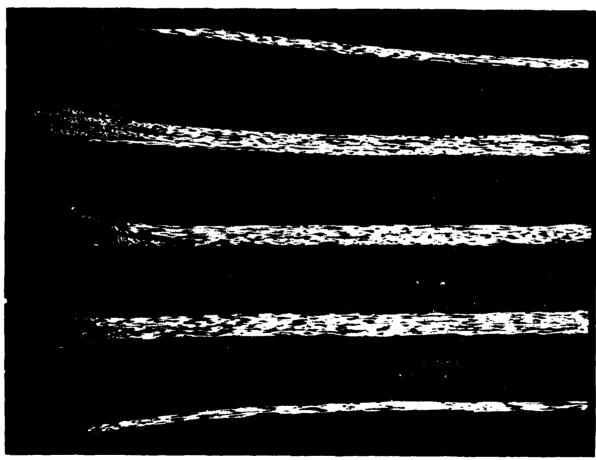
LOCATION: 1.43 IN. DAMAGE LENGTH: 0.781



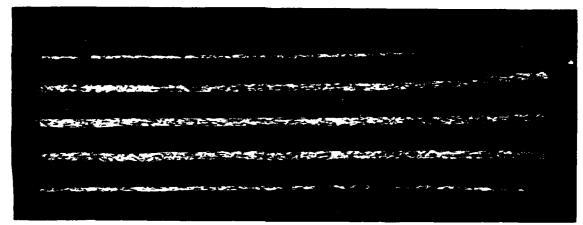


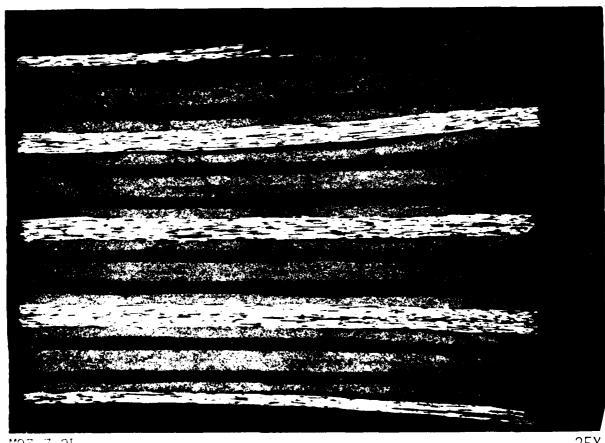

M23-6-21

LOCATION: 1.53 IN. DAMAGE LENGTH: 0.806"



LOCATION: 1.53 IN. DAMAGE LENGTH: 0.806

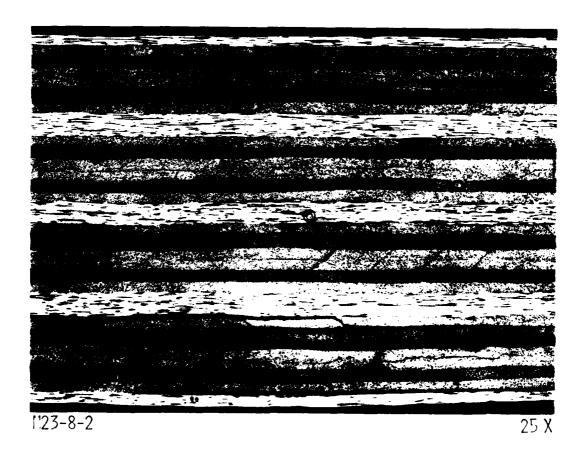

M23-7-1A 10X

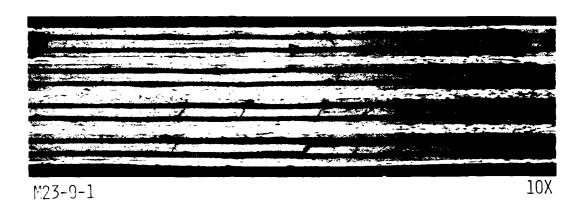

M23-7-2A 25X

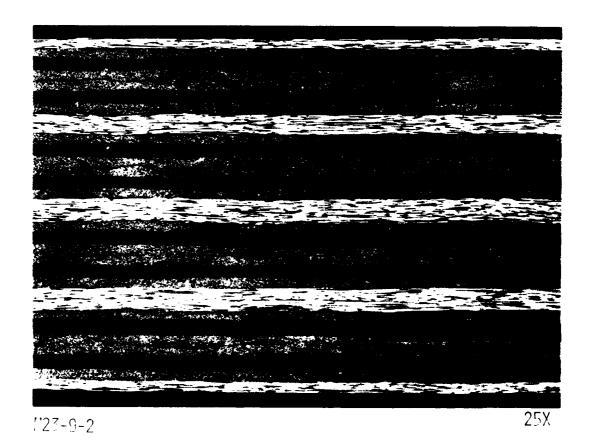
LOCATION: 1.63 IN. DAMAGE LENGTH: 0.750

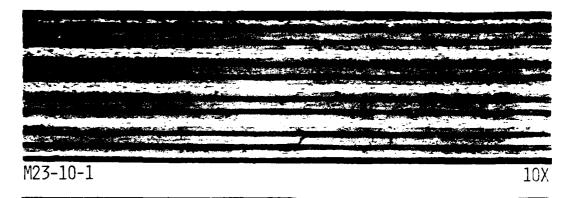
G85

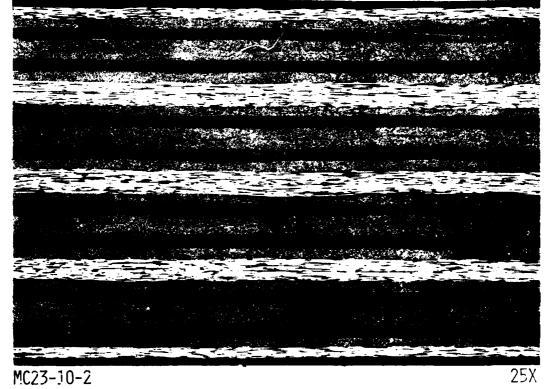


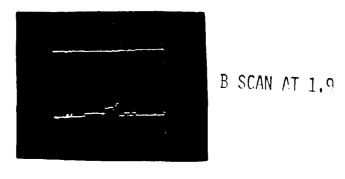

"23-7-1F 10X

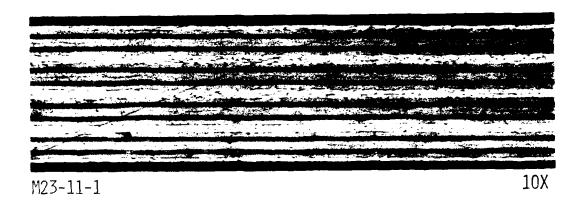

M23-7-21 25X

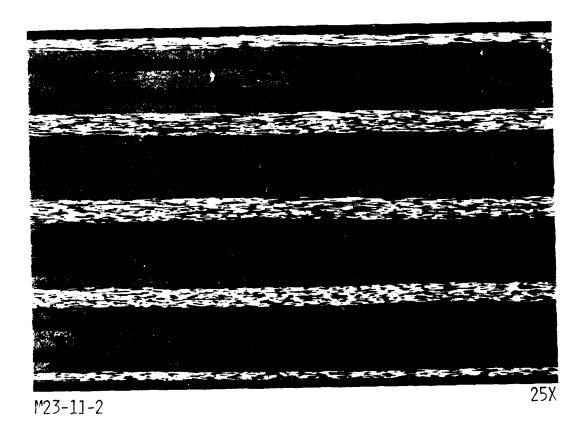

LOCATION: 1.63 IN. DAMAGE LENGTH: 0.750

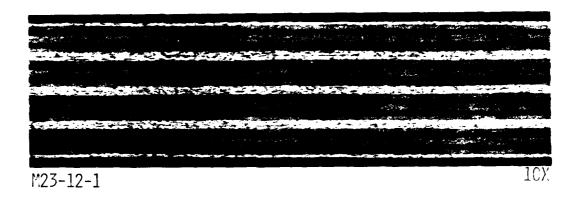


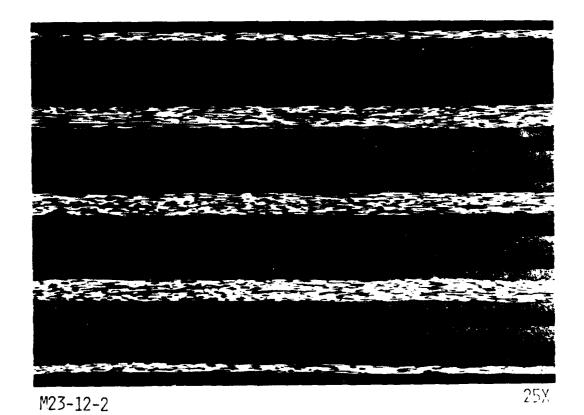

LOCATION: 1.73 IN. DAMAGE LENGTH: 0.679

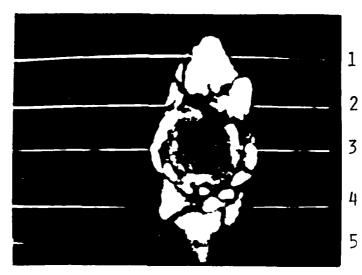



LCCATION: 1.83 IN. DAMAGE LEMETH: 0.586

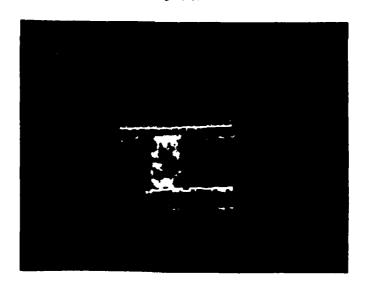




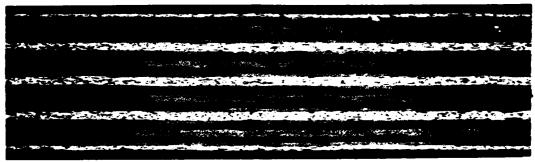

- 1.67 IN. DAMAGE LENGTH: 0.μ3μ



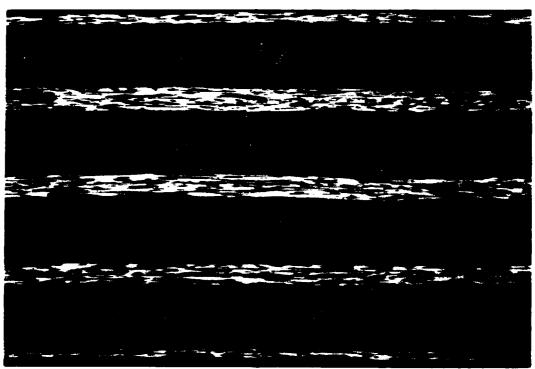
LOCATION: 2.03 IN. DAMAGE LENGTH: 0.188



LOCATION: 2.13 IN. DAMAGE LENGTH: No DAMAGE



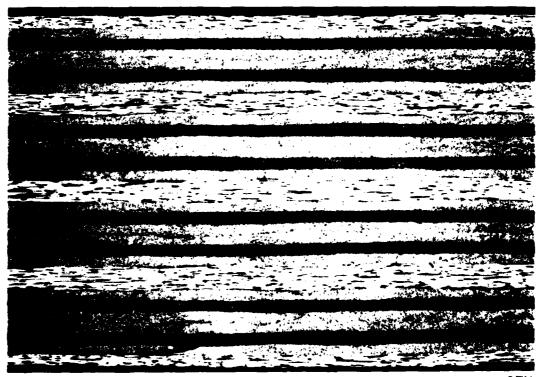
C-SCAN



CUMULATIVE B-SCAN

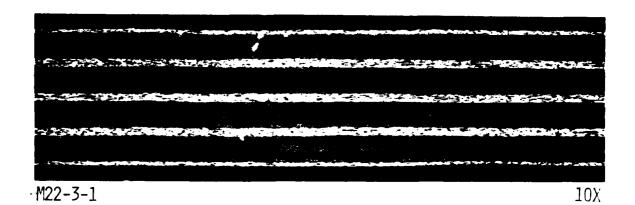
32-PLY SPEC: $MC-22 N_2 = 5,000 \text{ CYCLES}$

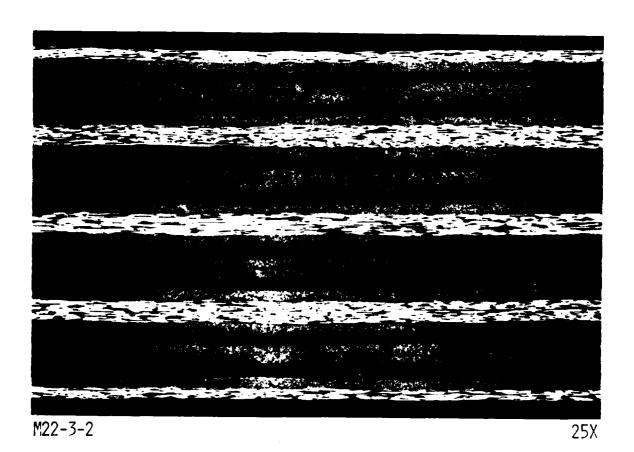
M22-1-1 10X

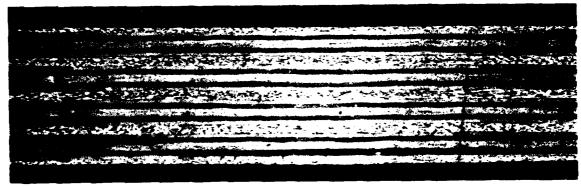


M22-1-2 25X

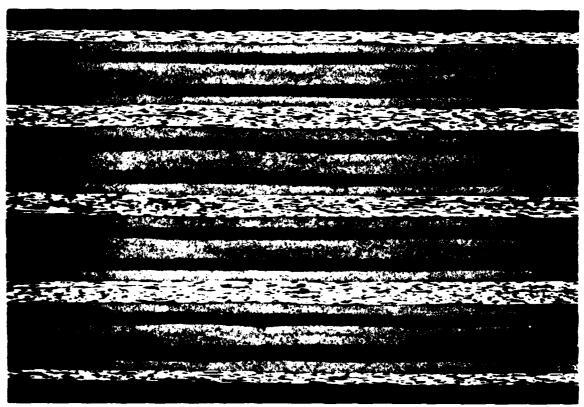
LOCATION: 0.69 IN. DAMAGE LENGTH: No CRACKS



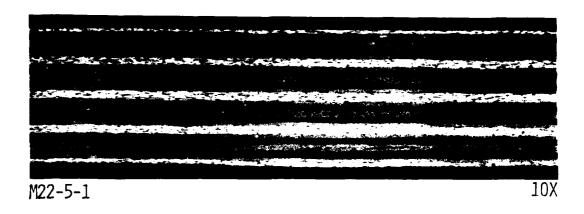

M22-2-1 10X

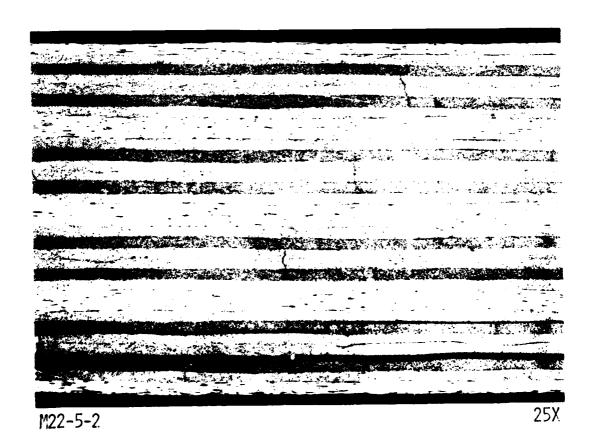

M22-2-2 25X

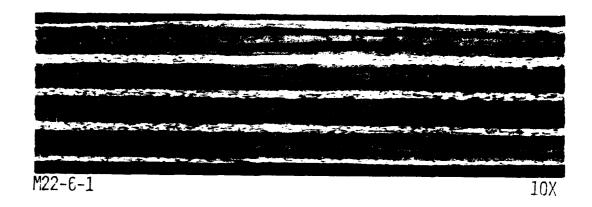
LOCATION: 0.79 IN. DAMAGE LENGTH: 0.318



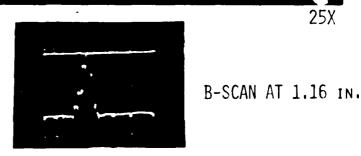
LOCATION: 0.89 IN. DAMAGE LENGTH: 0.419

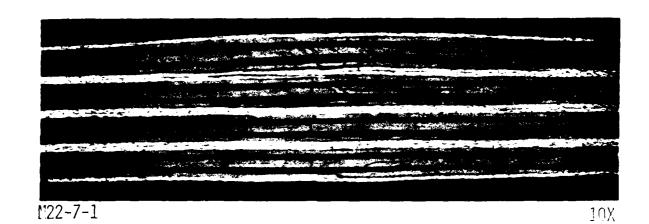


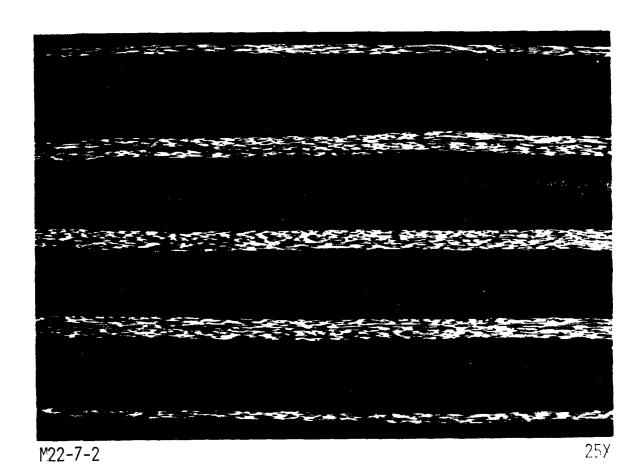

M22-4-1

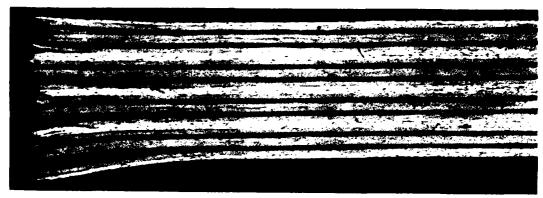

M22-4-2 25X

LOCATION: 0.99 IN. DAMAGE LENGTH: 0.620

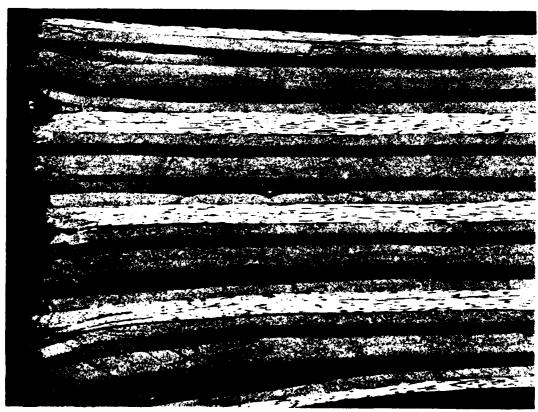



LOCATION: 1.09 IN. DAMAGE LENGTH: 0.836

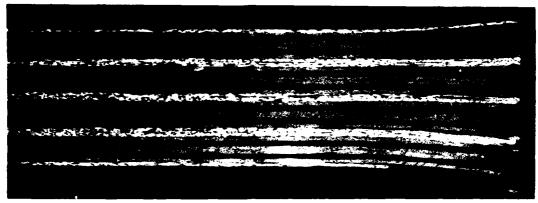




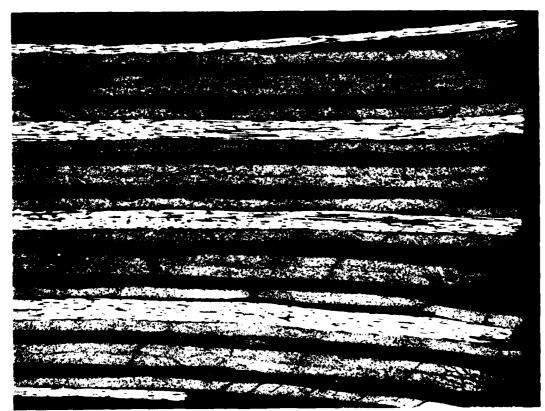
LOCATION: 1.19 IN. DAMAGE LENGTH: 0.661



LOCATION: 1.29 IN. DAMAGE LENGTH: 0.683

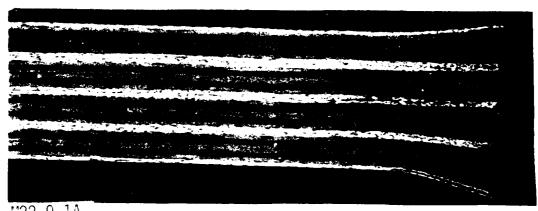


M22-8-1A 10X

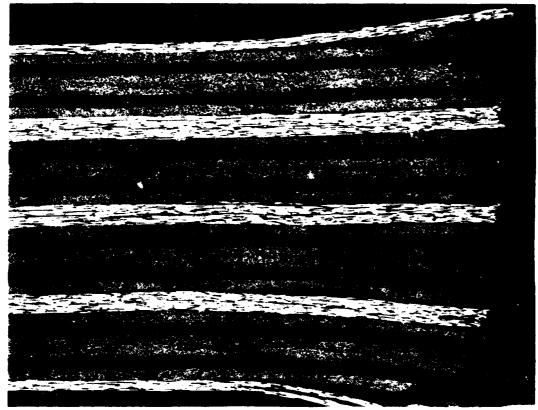


M22-8-1A 25X

LOCATION: 1.39 IN. DAMAGE LENGTH: 0.756


M22-8-2B

M22-8-2P. 25Y.

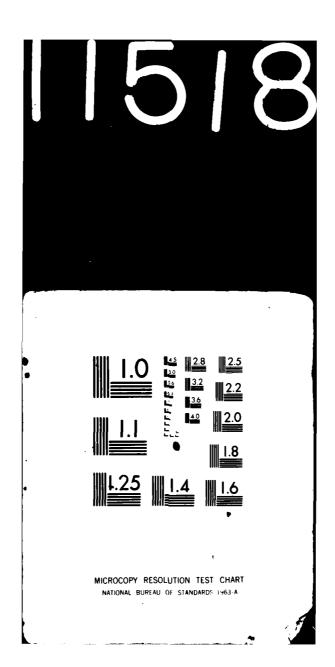

LOCATION: 1.39 IN. DAMAGE LENGTH: 0.756

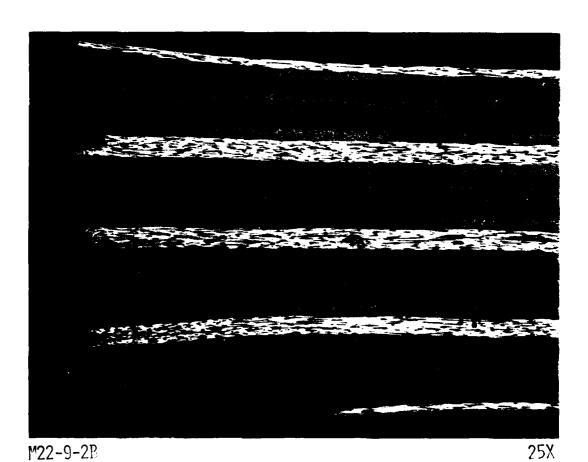
G101

1'22-9-1A

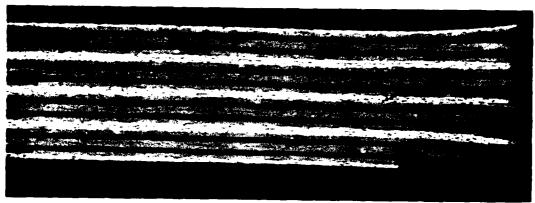
10%

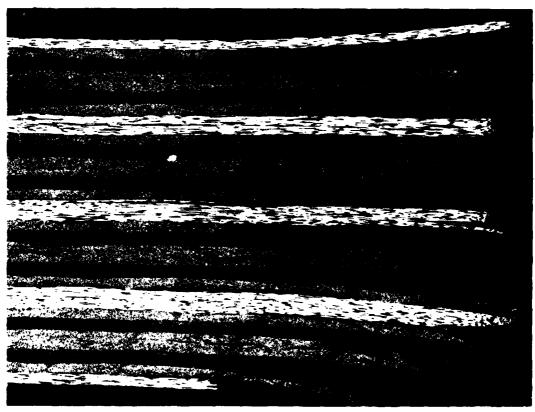
1122-9-2A


2EV

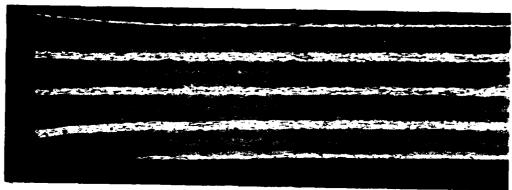

D-SCAN AT CENTED

LOCATION: J. HO IN. PARACE ISSUES

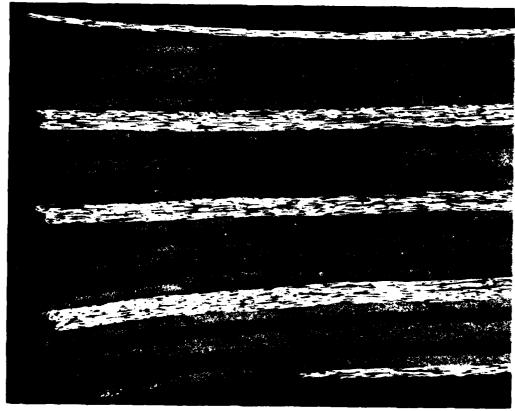

LOCKHEED-CALIFORNIA CO BURBANK
ADVANCED RESIDUAL STRENGTH DEGRADATION RATE MODELING FOR ADVANCE—CTC(U)
JUL 81 K N LAURATIS, J T RYDER, D E PETTIT F33615-77-C-3004
LR-28366-19 AFVAL-TR-79-3095-VOL-3 NL AD-A115 185 UNCLASSIFIED 400 (3) 0 ٥ 9 Đ ø ø v o o ٥ 0 ø Ħ ٥ () v



LOCATION: 1.49 IN. DAMAGE LENGTH: 0.780

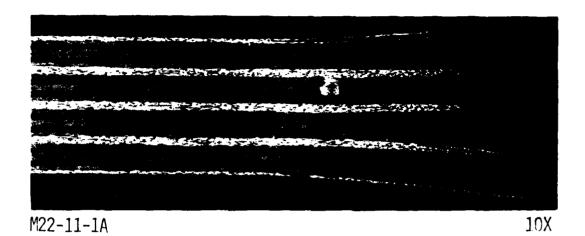


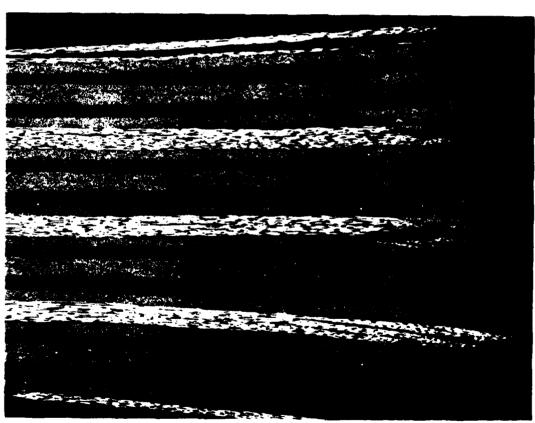
M22-10-1A 10X



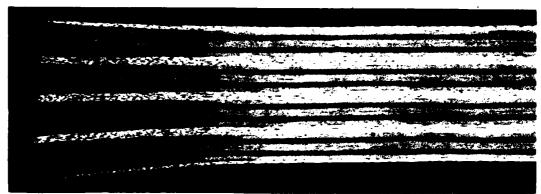
M22-10-2A 25X

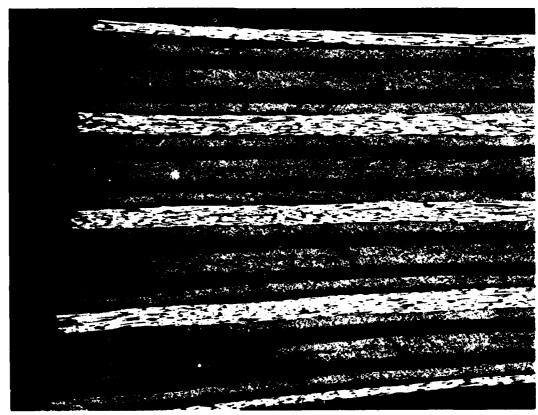
LOCATION: 1.59 IN. DAMAGE LENGTH: 0.793




M22-10-1B

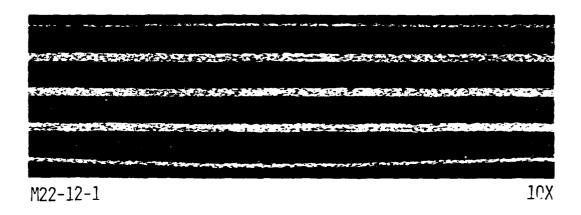
M22-10-2B 25X

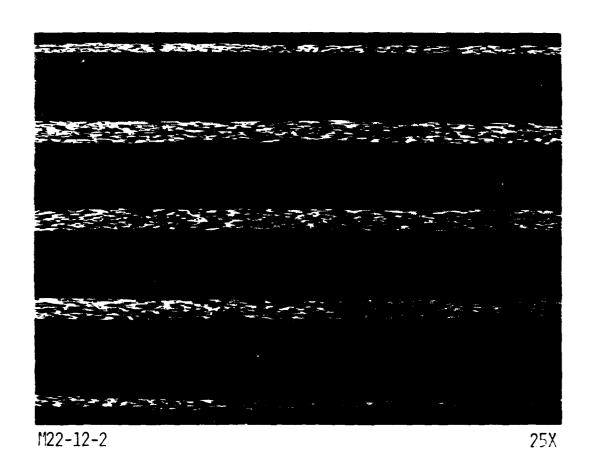

LOCATION: 1.59 IN. DAMAGE LENGTH: 0.793



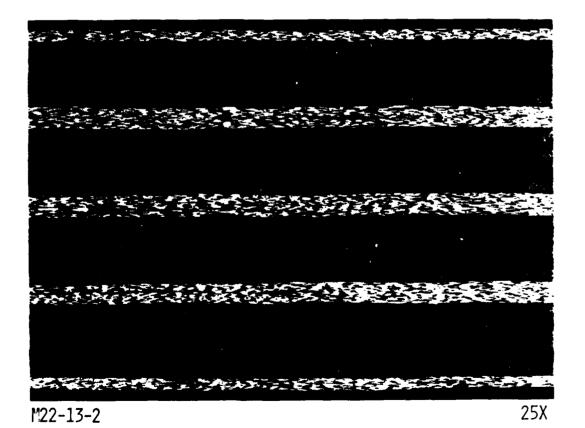
M22-11-2A 25X

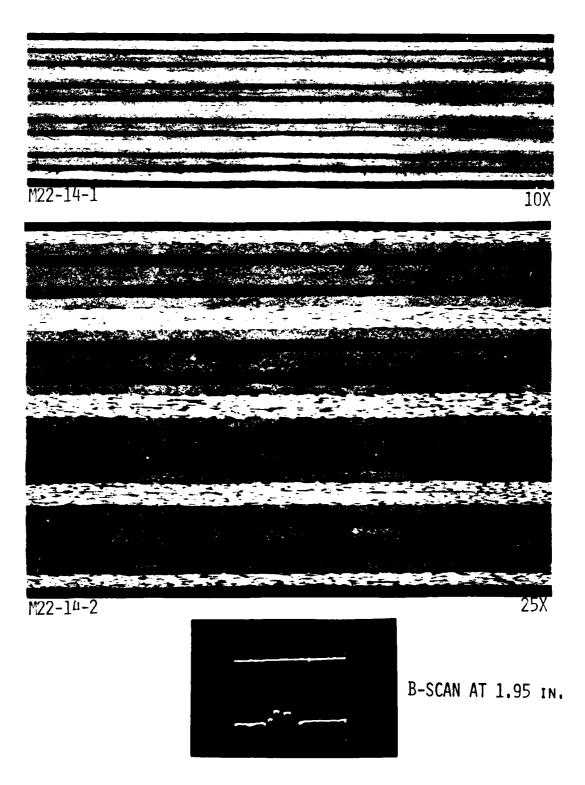
LOCATION: 1.69 IN. DAMAGE LENGTH: 0.726



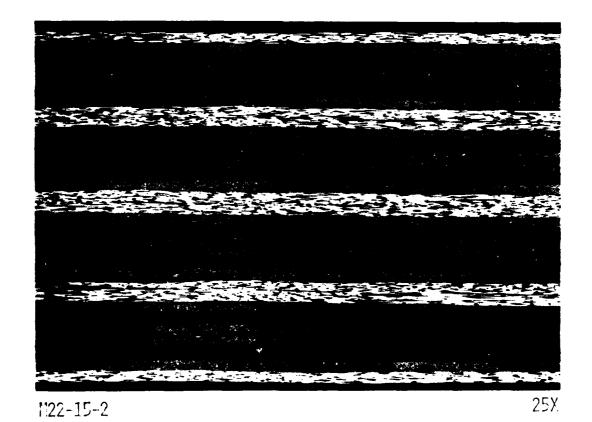

M22-11-1B

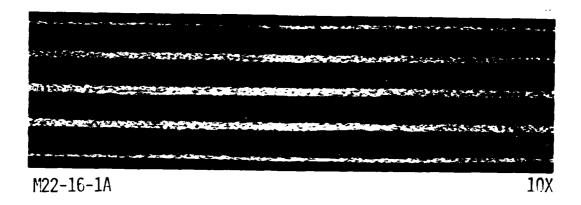
M22-1J-2P 25X

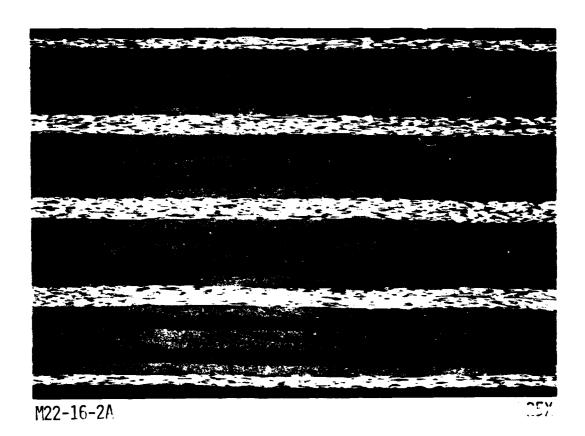

LOCATION: 1.69 IN. DAMAGE LENGTH: 0.726



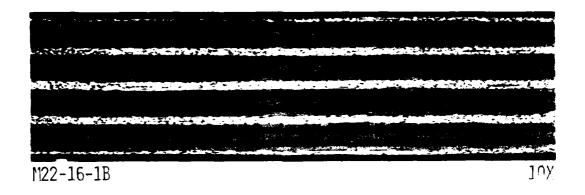
LOCATION: 1.79 IN. DAMAGE LENGTH: 0.754

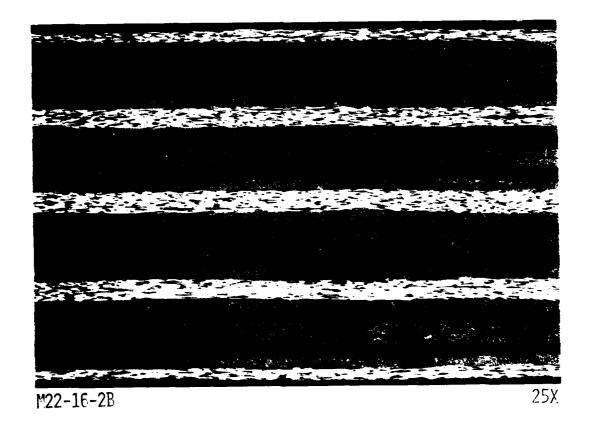

LOCATION: 1.89 IN. DAMAGE LENGTH: 0.689

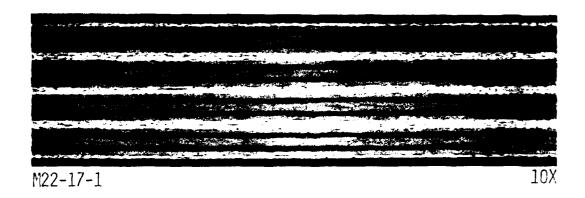

LOCATION: 1.99 IN. DAMAGE LENGTH: 0.641

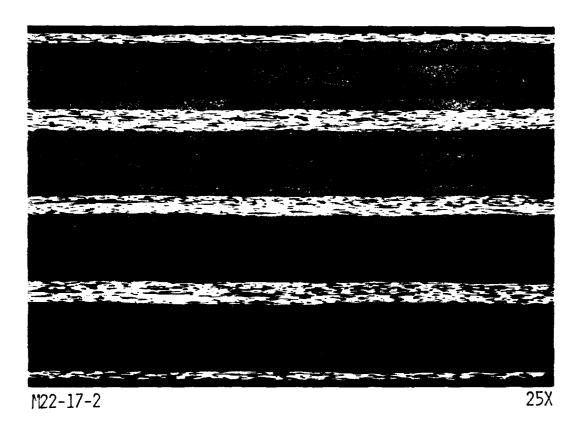


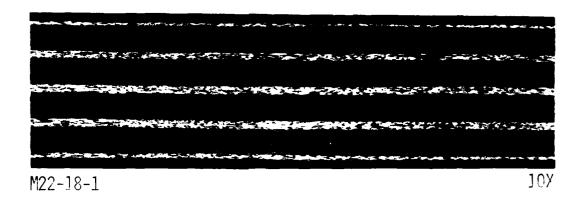
M22-15-1 1CX

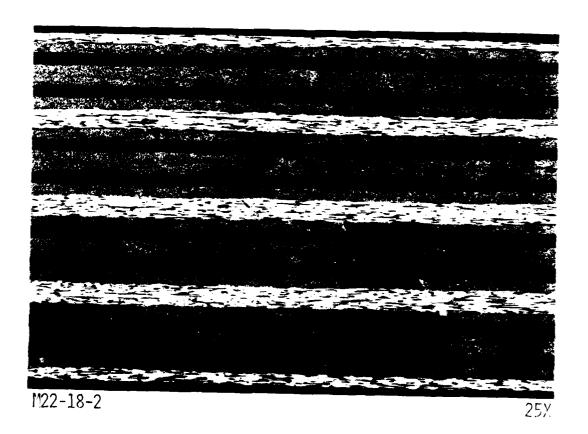


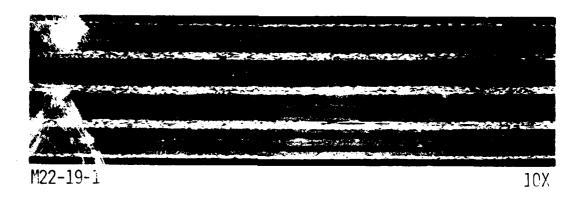

LOCATION: 2.09 IN. DAMACE LENGTH: 0.554

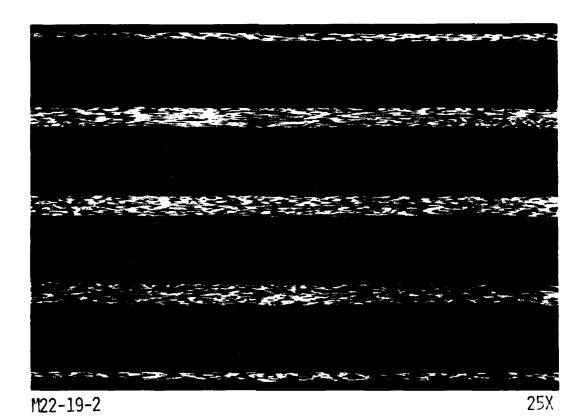



LOCATION: 2.19 IN. DAMAGE LENGTH: 0.390



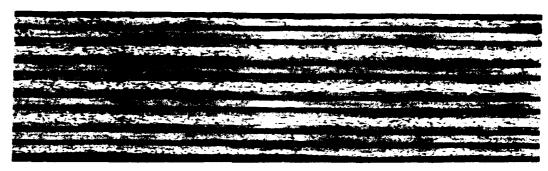

LOCATION: 2.19 IN. DAMAGE LENGTH: 0.390



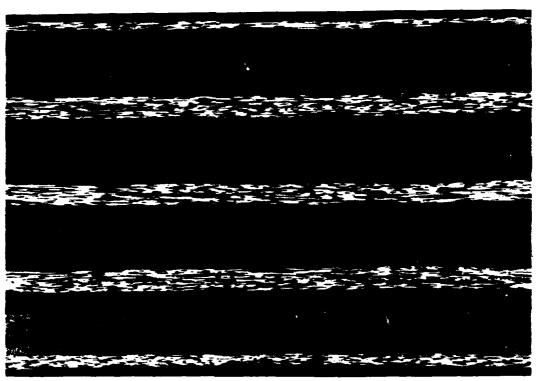

LOCATION: 2.29 IN. DAMAGE LENGTH: 0.325

LOCATION: 2.39 IN. DAMAGE LENGTH: 0.115

LOCATION: 2.49 IN. DAMAGE LENGTH: No DAMAGE

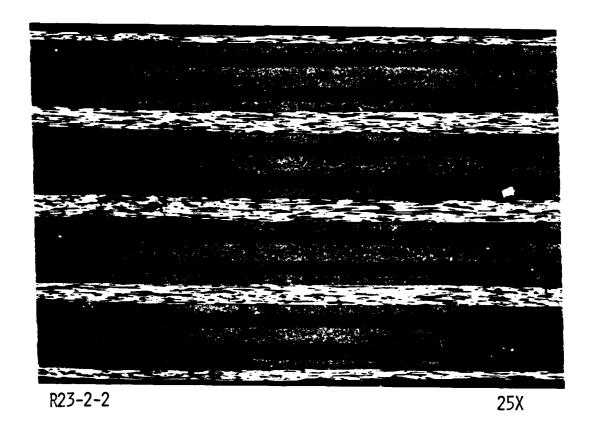


C-SCAN

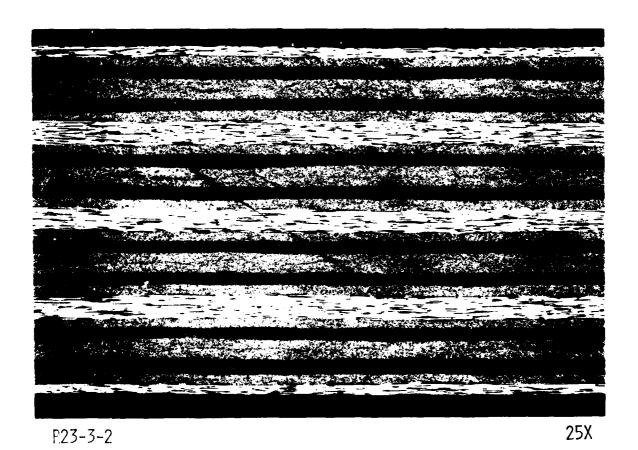


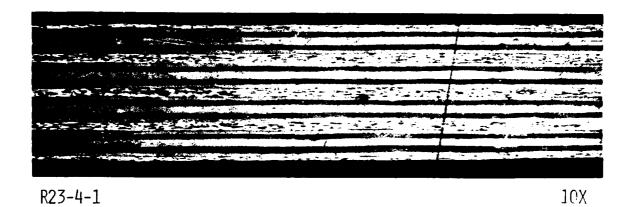
CUMULATIVE B-SCAN

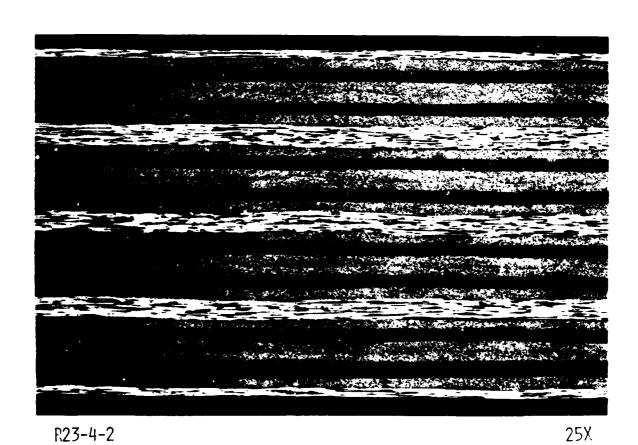
32-PLY SPEC: RC-23 $N_3 = 10,000$ CYCLES

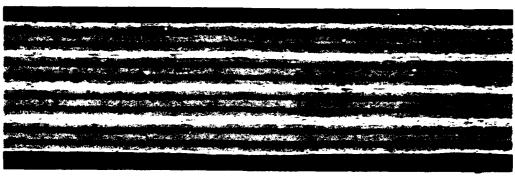

R23-1-1 10X

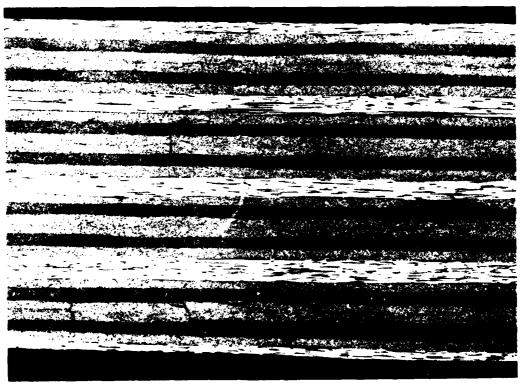
F23-1-2 25X


LOCATION: 0.61 IN. DAMAGE LENGTH: 0.237



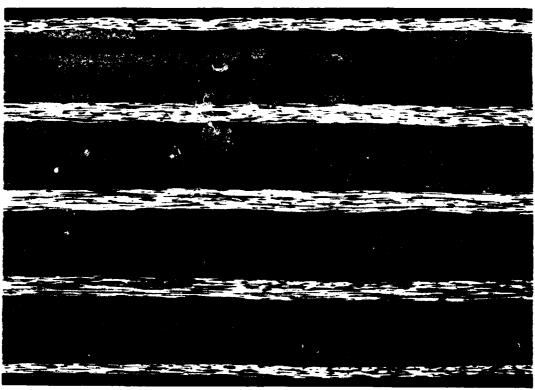

LOCATION: 0.71 IN. DAMAGE LENGTH: 0.379


LOCATION: 0.81 DAMAGE LENGTH: 0.438

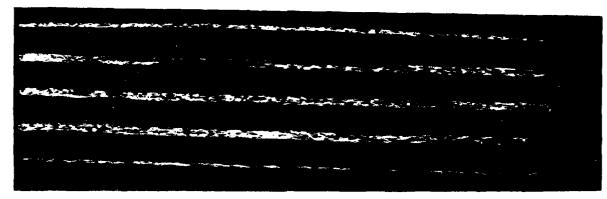


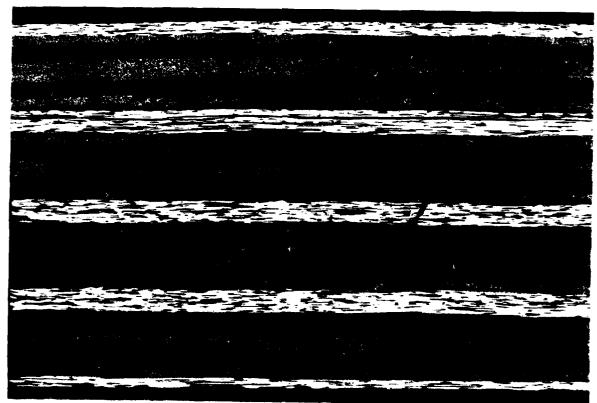
LOCATION: 0.91 IN. DAMAGE LENGTH: 0.859

LOCATION: 1.01 IN. DAMAGE LENGTH: 0.677



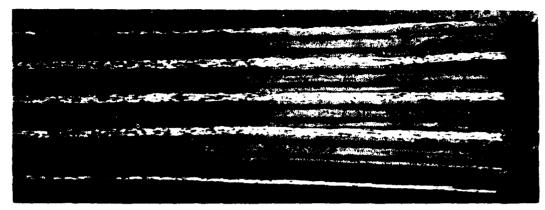
R23-5-2 25X


B-SCAN AT 1.04 IN.

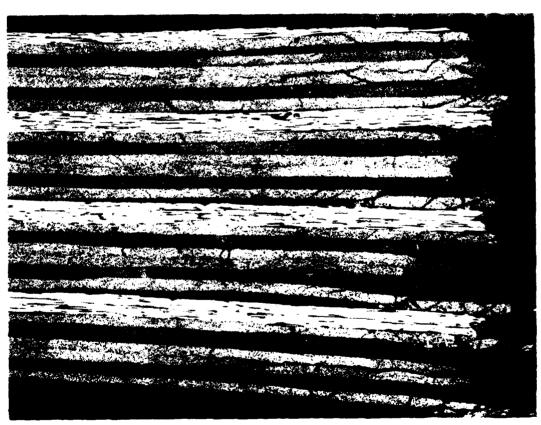


P.23-6-2 25X

LOCATION: 1.11 IN. DAMAGE LENGTH: 0.709

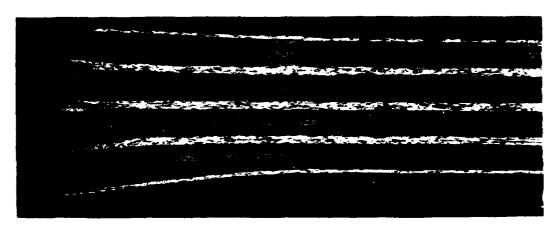


P23-7-1

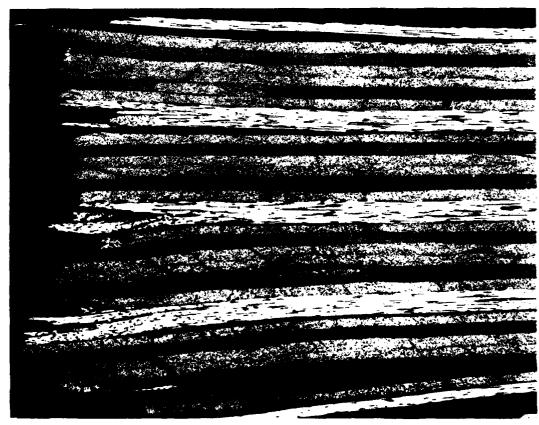


P23-7-2 25X

TOCATION: 1.21 IN. DAMAGE LENGTH: 0.734

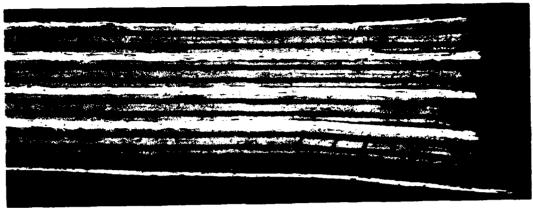


R23-8-1A 30X



R23-8-2A 25X

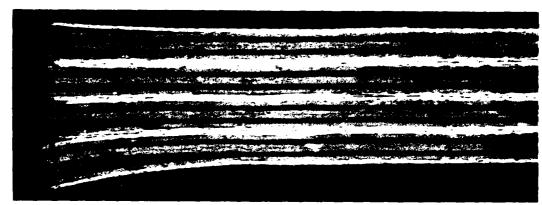
LOCATION: 1.31 IN. DAMAGE LENGTH: 0.832



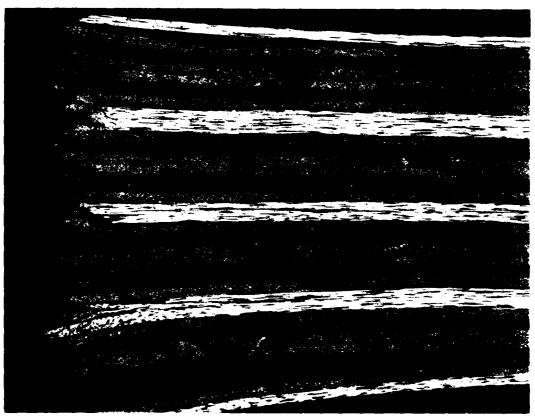
R23-8-1B 10X

R23-8-2B 25X

LOCATION: 1.31 IN. DAMAGE LENGTH: 0.832

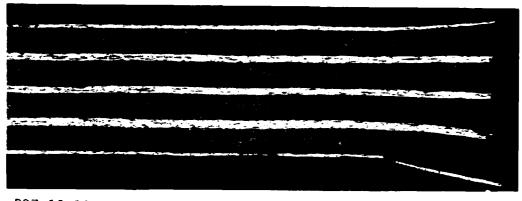


R23-9-1A



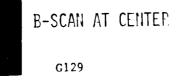
R23-9-2A 25X

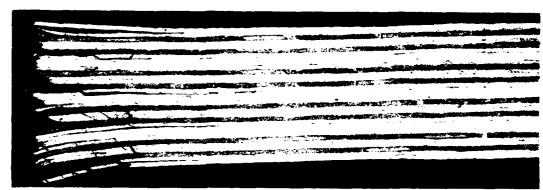
LOCATION: 1.41 IN. DAMAGE LENGTH: 0.907


R23-9-1B 10^y

R23-9-2B 25X

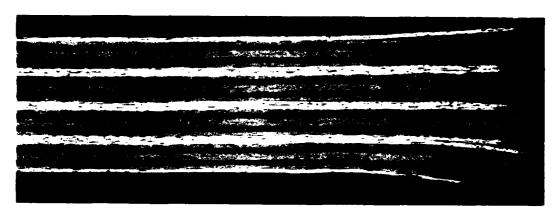
LOCATION: 1.41 IN. DAMAGE LENGTH: 0.907


LOCATION: 1.51 IN. DAMAGE LENGTH: 0.926

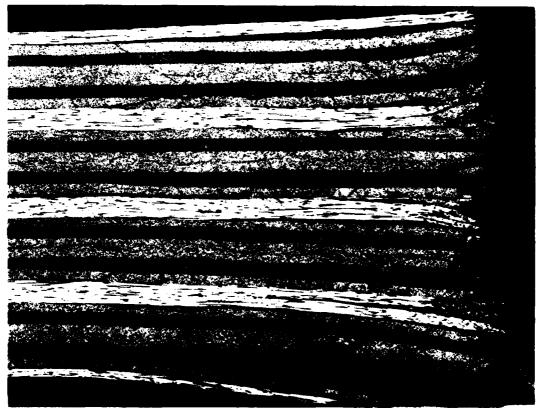


R23-10-1A 19Y

R23-10-2A 25X

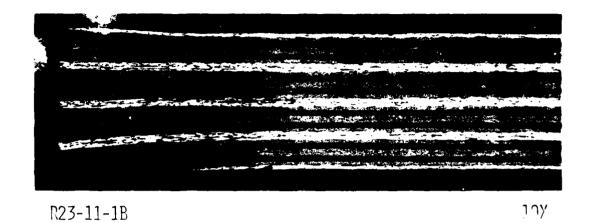


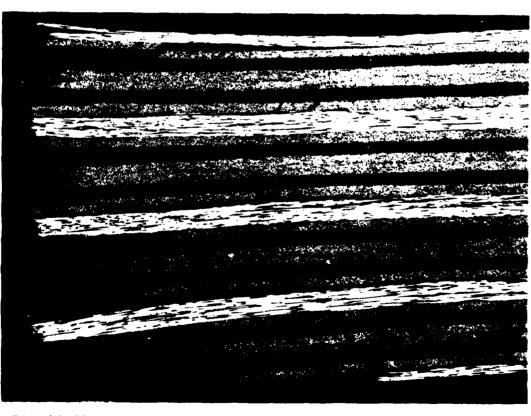
R23-10-JP 10X



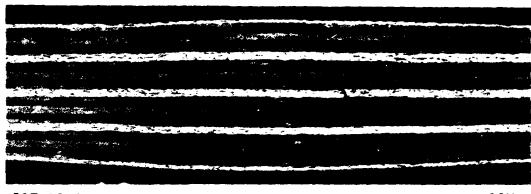
R23-10-2B 25X²

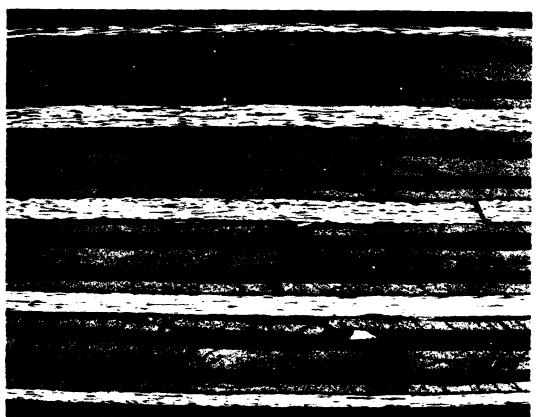
LOCATION: 1.51 IN. DAMAGE LENGTH: 0.926




R23-11-1A

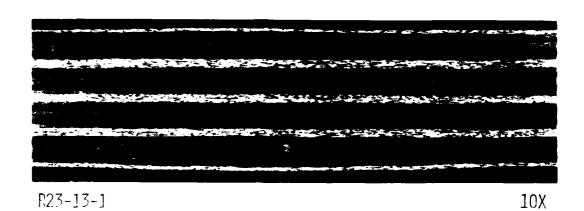
R23-11-2A 25X

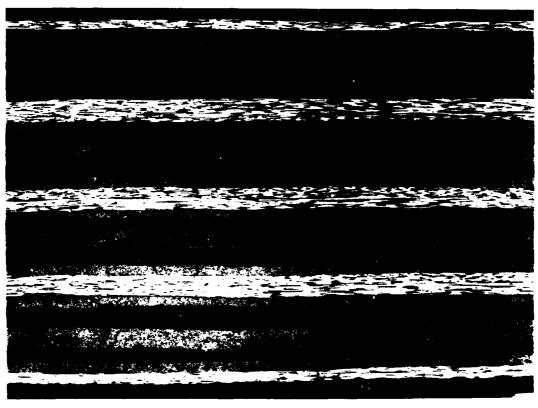

LOCATION: 1.61 IN. DAMAGE LENGTH: 0.882



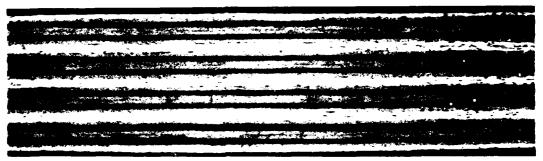
P.23-11-2B 25X

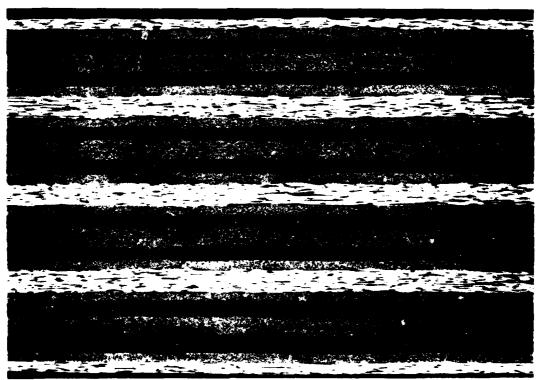
LOCATION: 1.61 IN. DAMAGE LENGTH: 0.882





P.23-12-2 25X

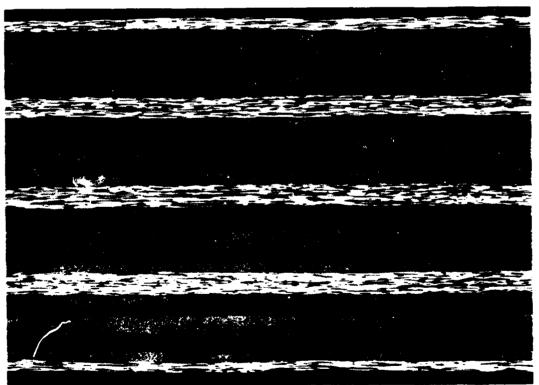

LOCATION: 1.71 IN. DAMAGE LENGTH: 0.763



Γ23-13-2 **25**X

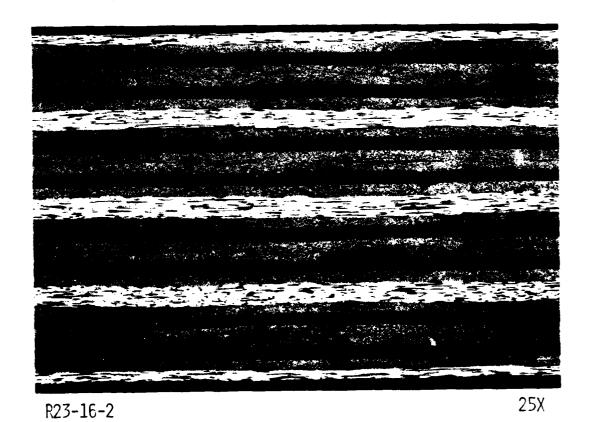
LOCATION: 1.81 IN. DAMAGE LENGTH: 0.702

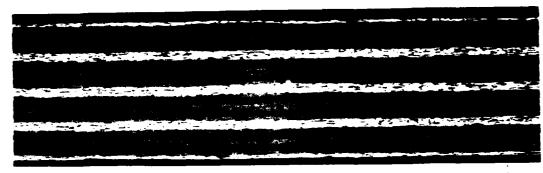
F23-14-1 10X


R23-14-2 25X

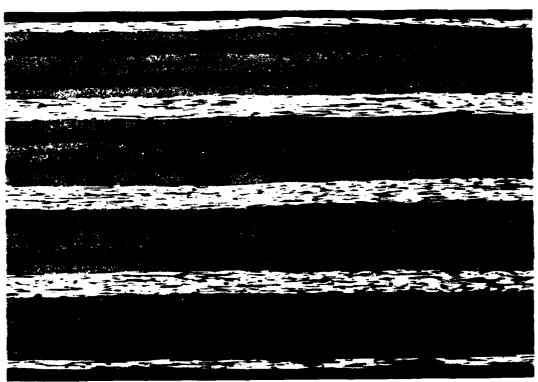
LOCATION: 1.91 in. DAMAGE LENGTH: 0.649

LOCATION 2.01 IN. DAMAGE LENGTH: 0.635

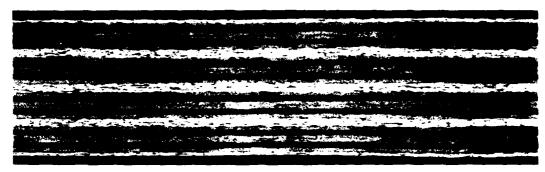


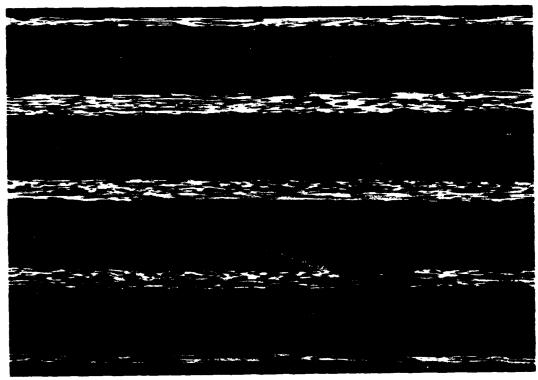

P23-15-2 25X

E-SCAN AT 2.02 IN.



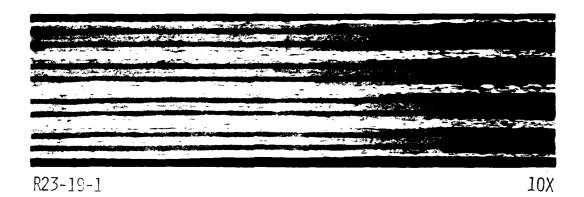
LOCATION: 2.11 IN. DAMAGE LENGTH: 0.571

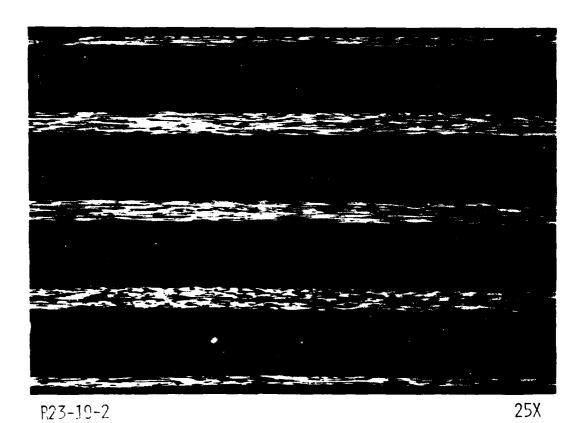


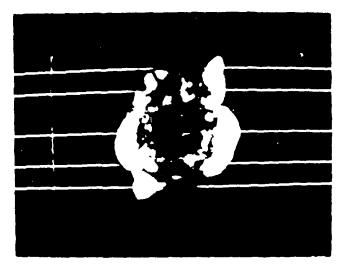


F.23-17-2 25X

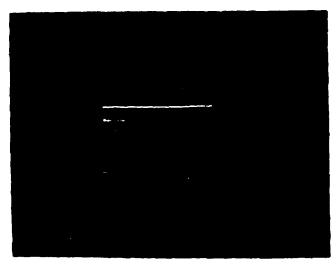
LOCATION: 2.21 IN. DAMAGE LENGTH: 0.396



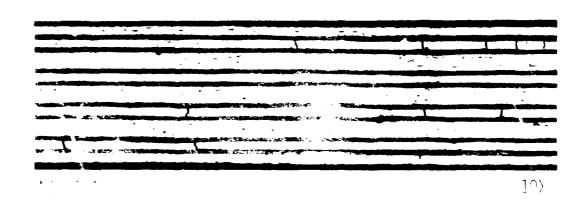

R23-18-1 10X

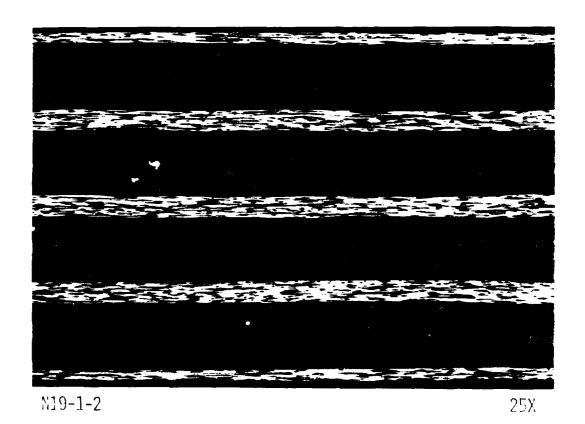

R23-18-2 25X

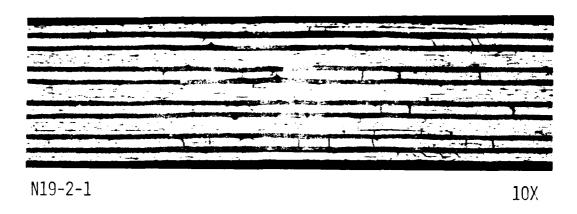
LOCATION: 2.31 IN. DAMACE LENGTH: 0.241

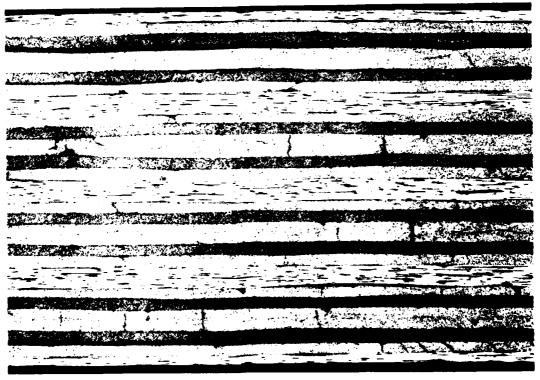


LOCATION: 2.41 IN. PANAGE LENGTH: No PAMAGE

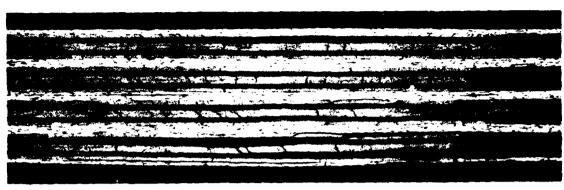


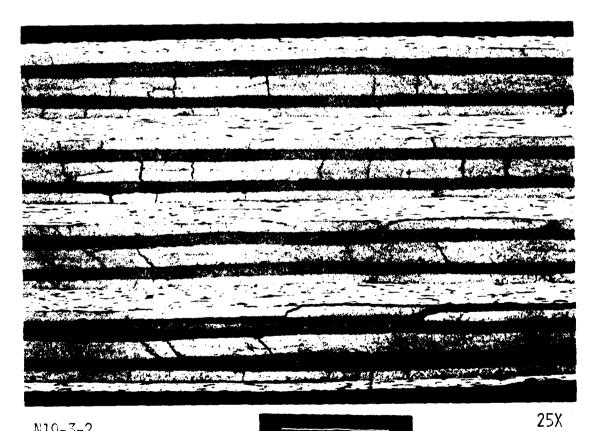

C-SCAN


CUMULATIVE E-SCAN


32-PLY SPEC: NB-19 $N_{t_1} = 20,000$ CYCLES

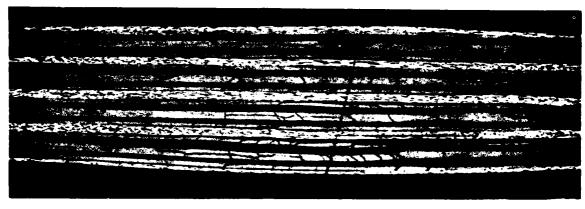
LOCATION: 0.08 IN. DAMACE LENGTH: 0.756



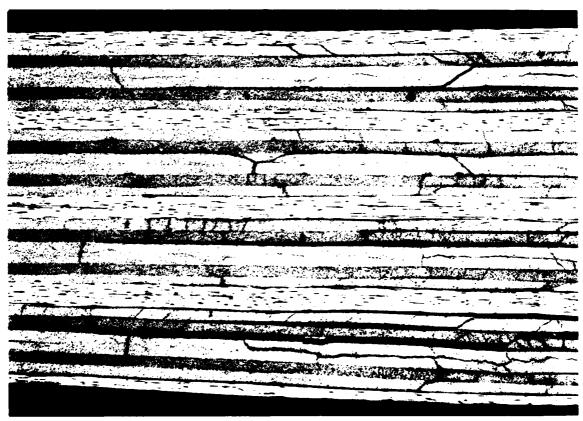

N19-2-2 25X

LOCATION: 1.08 IN. DAMAGE LENGTH: 0.717

LOCATION: 1.18 IN. DAMAGE LENGTH: 0.764

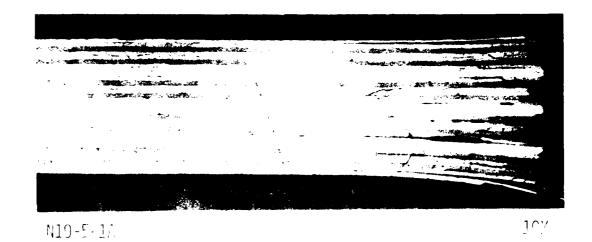


10X NJ9-3-1



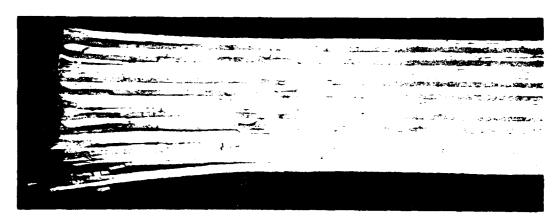
N19-3-2

B-SCAN AT 1.17 IN. G144




N19-4-1 10X

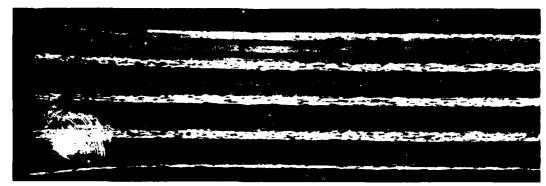
N19-4-2 25X


LOCATION: 1.28 IN. DAMAGE LENGTH: 0.730

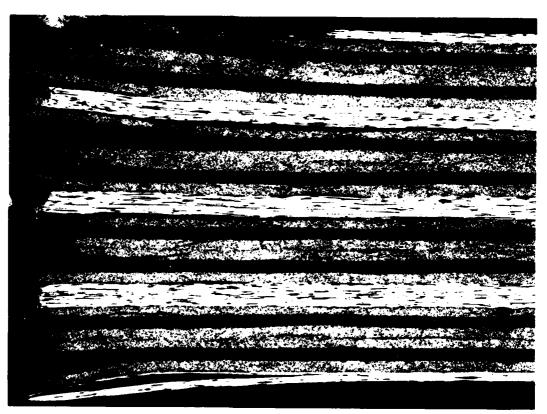
N19-5-2A

LOCATION: 1.38 IN. PARMICE LENGTH: 0.533

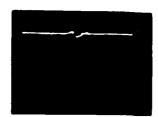
N19-5-1B


10X

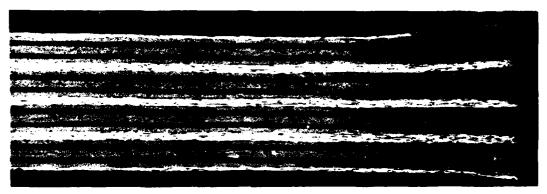
N19-5-2B


25

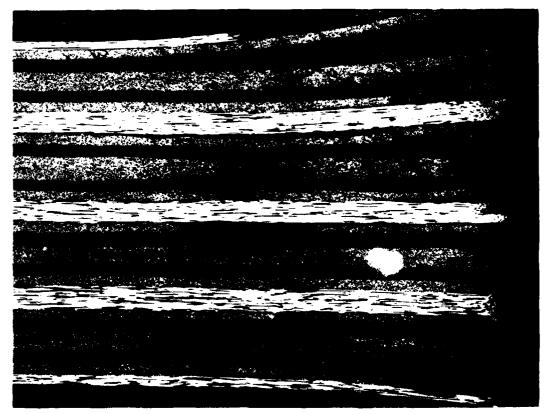
LOCATION: 1.38 IN. DAMACE LENCTH: 0.833


N19-6-10

10X

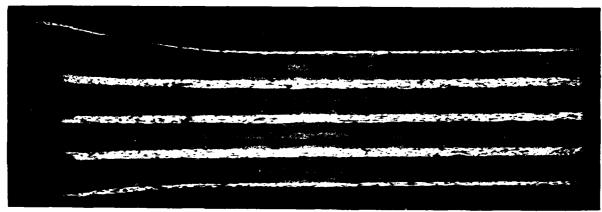

N19-6-2A

25X

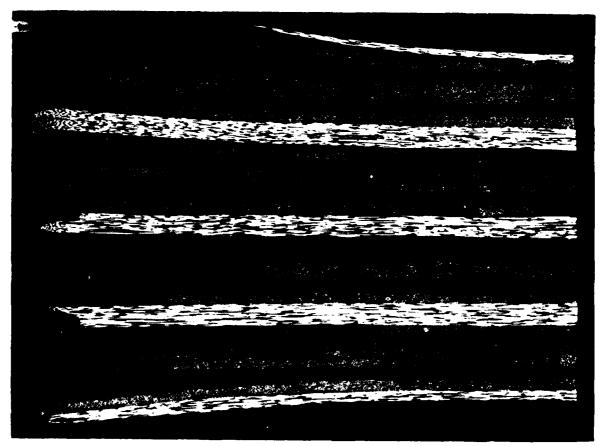


B-SCAN AT CENTER

LOCATION: 1.48 IN. DAMAGE LENGTH: 0.938

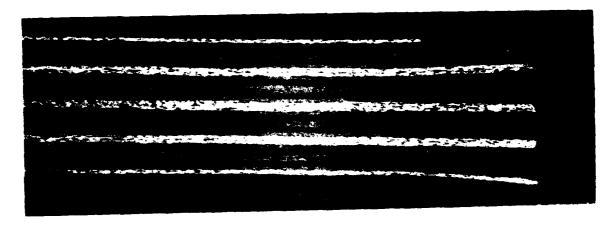


N19-6-1B 10Y

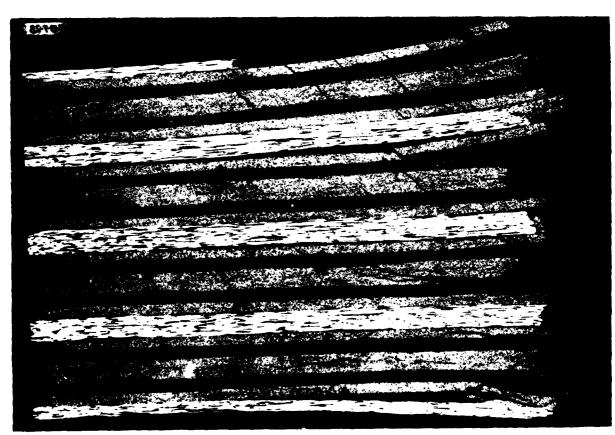


N19-6-2B 25X

LOCATION: 1.48 IN. DAMAGE LENGTH: 0.518

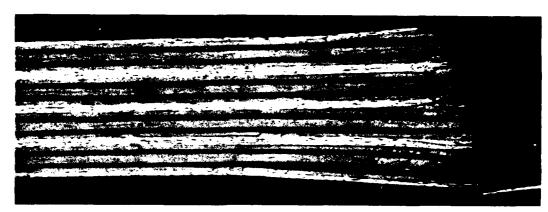


N19-7-1A



1119-7-21

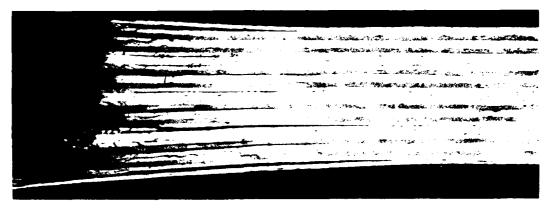
LOCATION: 1.58 IN. PARACE LEMOTH: 0.028



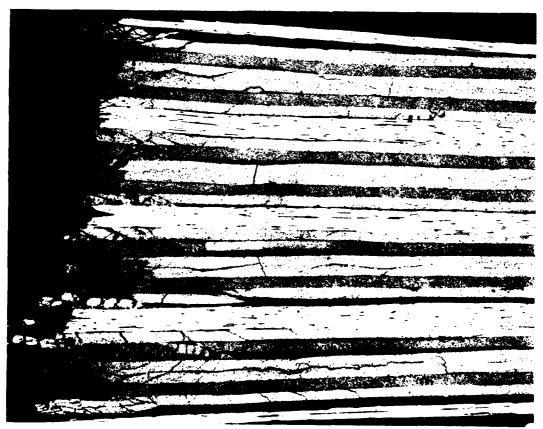
N19-7-1B

N39-7-2B

LOCATION: 1.58 IN. DAMAGE LENGTH: 0.028

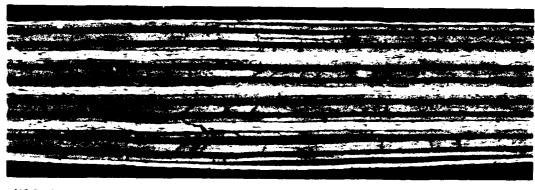


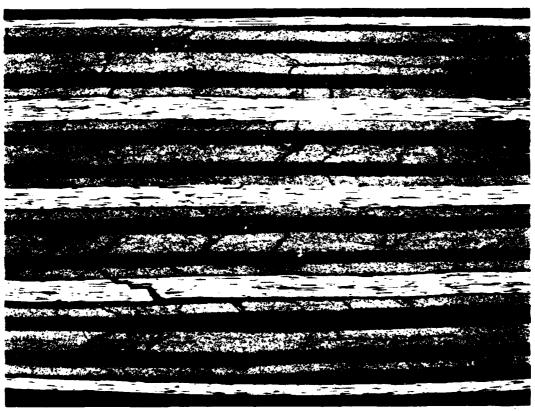
N1S-8-1A



25X

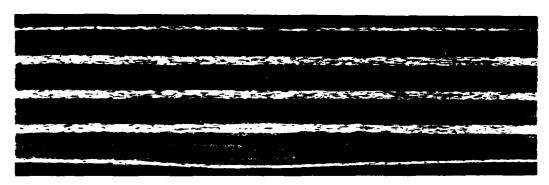
LCCATION: 1.68 IN. DAMAGE LENGTH: 0.933


N19-8-1B 10%

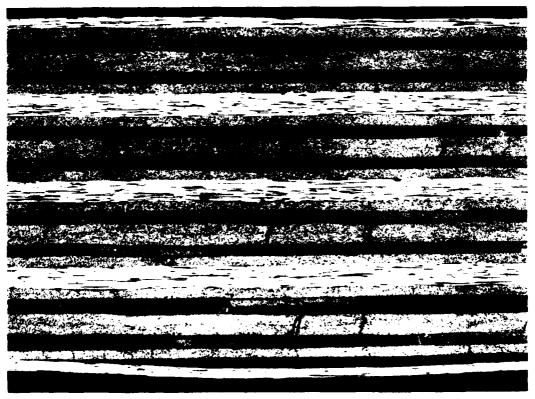

N19-8-2F

LOCATION: 1.68 IN. DAMAGE LENGTH: 0.033

LOCATION: 1.78 IN. DAMAGE LENGTH: 0.888

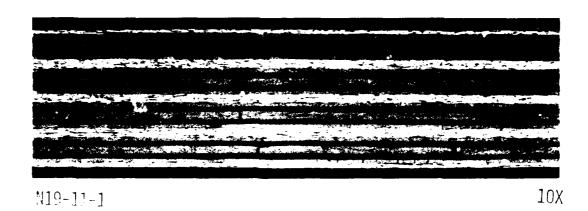


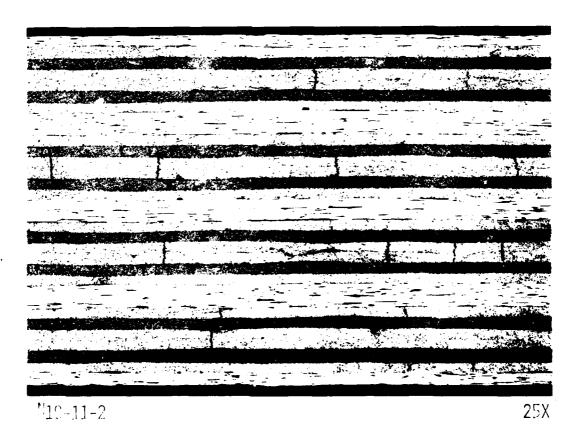
N19-S-1

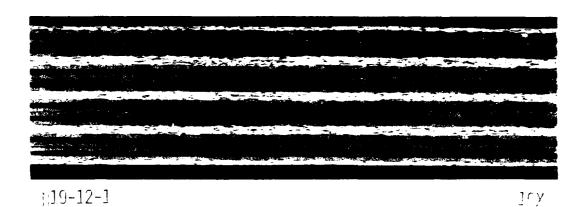


N19-3-2 25X

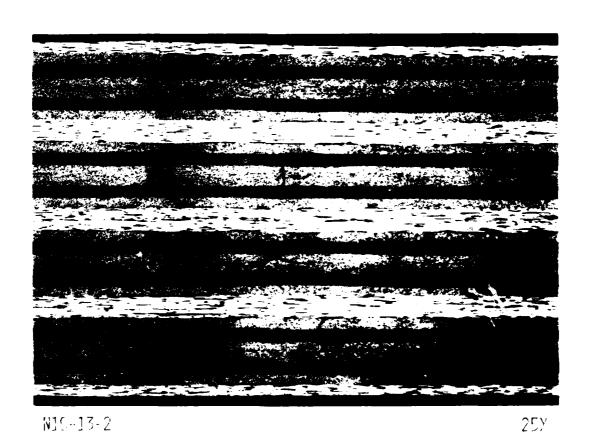
B-SCAH /T 1.76 IN.



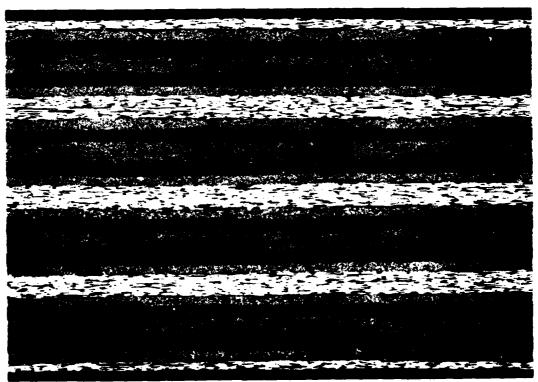

N19-10-1 10X


N19-10-2 25X

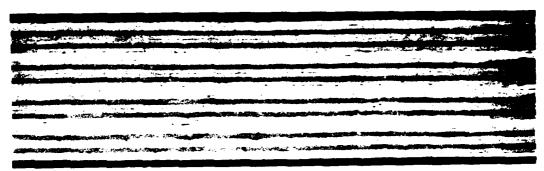
LOCATION: 1.88 IN. DAMAGE LENGTH: 0.630

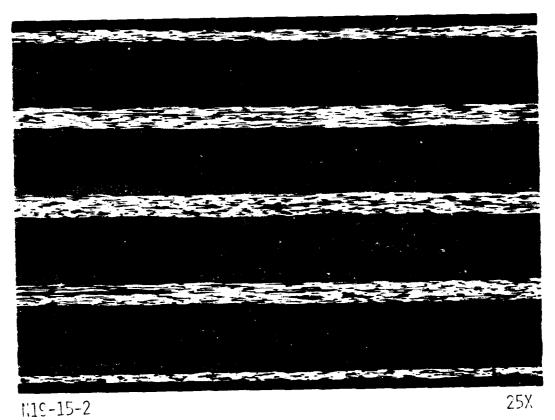

LOCATION: 1.98 IN. DAMAGE LEMOTH: 0.611

LOCATION: 2.08 IN. DAMACE LENGTH: 0.562

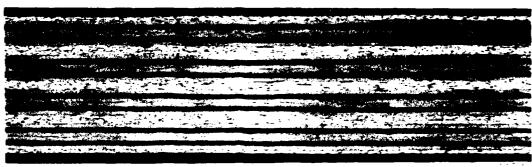


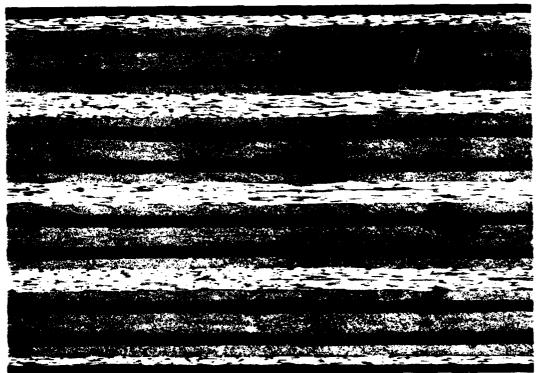
LOCATION: 2.18 IN. DAMAGE LEMOTH: 0.538



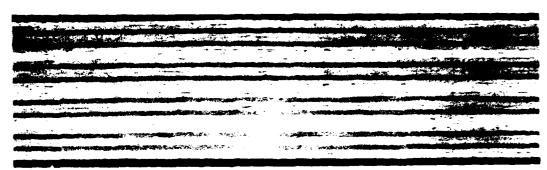


N19-14-2 25X

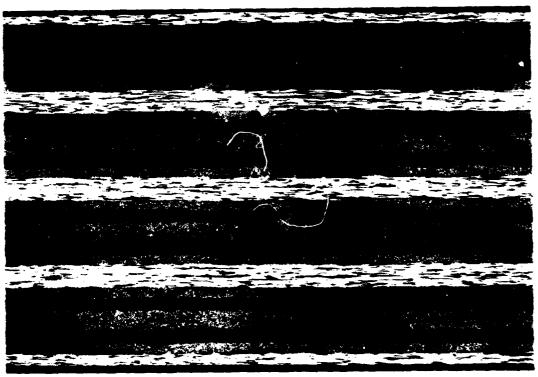

LOCATION: 2.28 IN. DAMAGE LENGTH: 0.234


]nx N19-15-1

LOCATION: 2.38 IN. DAMACE LENGTH: 0.078

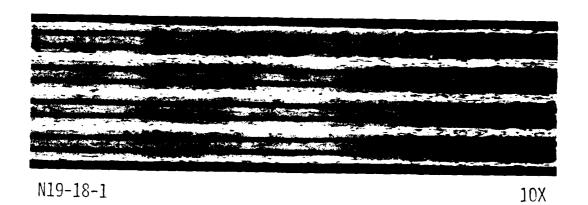


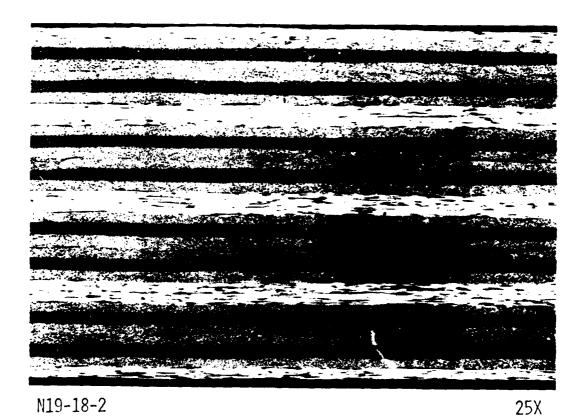
N19-16-1

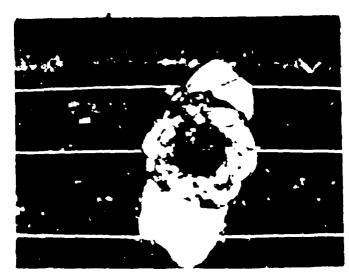


N19-16-2 25X

LOCATION: 2.48 IN. DAMAGE LENGTH: 0.122

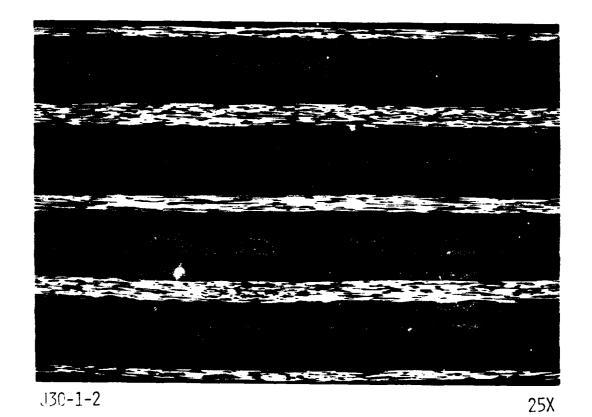


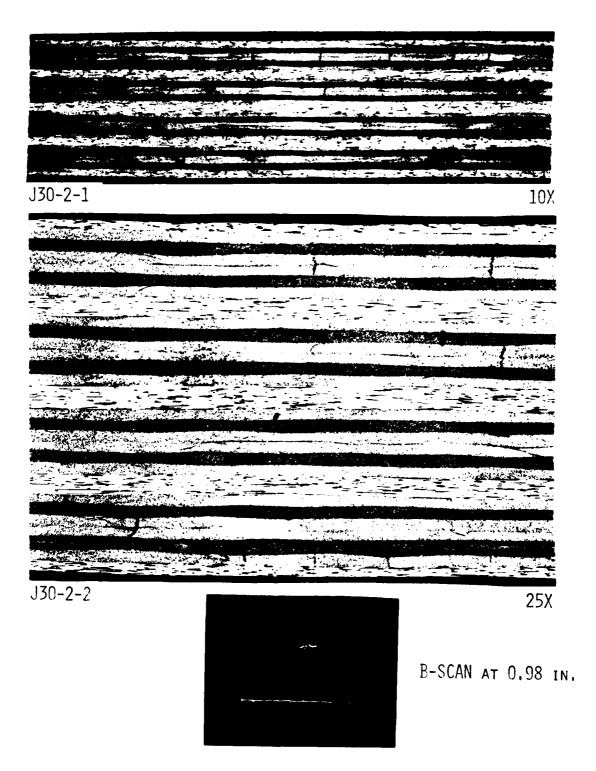

M19-17-1


N19-17-2 25X

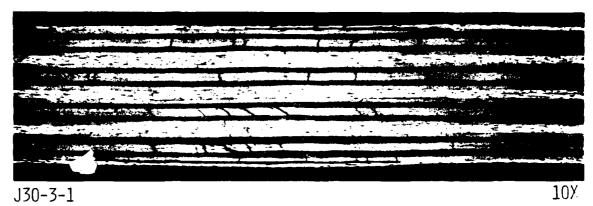
LOCATION: 2.58 IN. DAMAGE LENGTH. 0.108

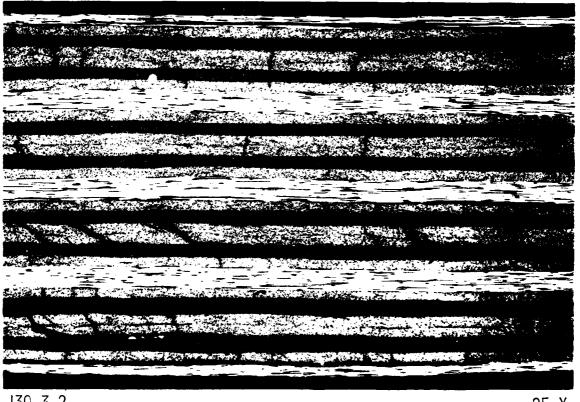
LOCATION: 2.68 IN. DAMAGE LENGTH: ONE TRANS CRACK THRU TWO PLYS


C-SCAN

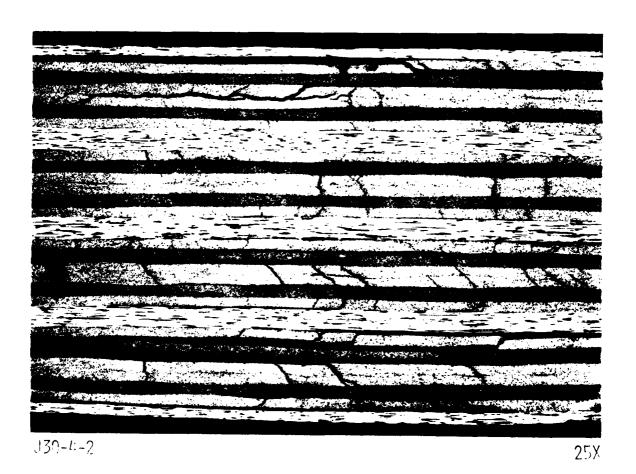

CUMULATIVE E-SCAN

32-PLY SPEC: $JC-30 N_5 = 28,000 CYCLES$

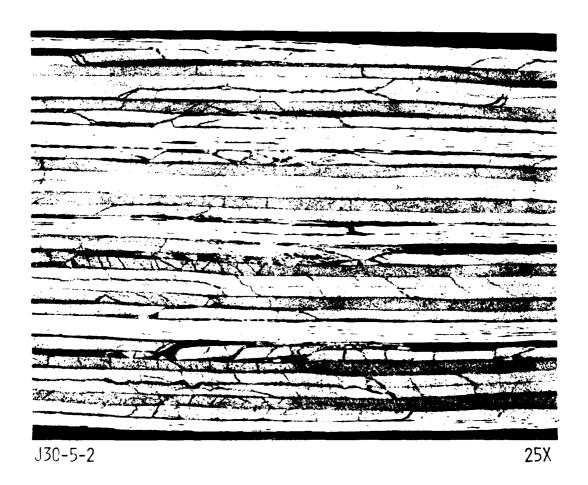



LOCATION: 0.84 in. DAMAGE LENGTH: 0.217

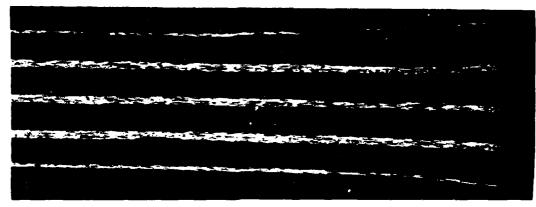
LOCATION: 0.94 IN. DAMAGE LENGTH: 0.657

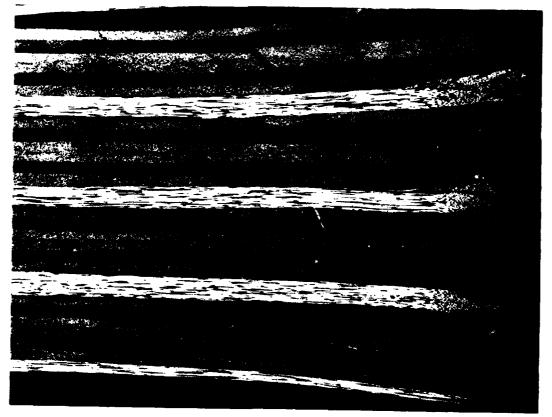


J30-3-2 25 X


LOCATION: 1.04 IN. DAMAGE LENGTH: 0.727 G167

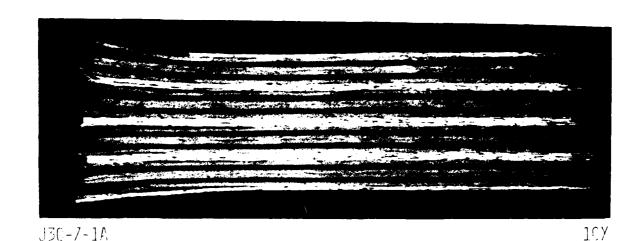

LOCATION: 1.14 IN. DAMAGE LEMOTH: 0.746

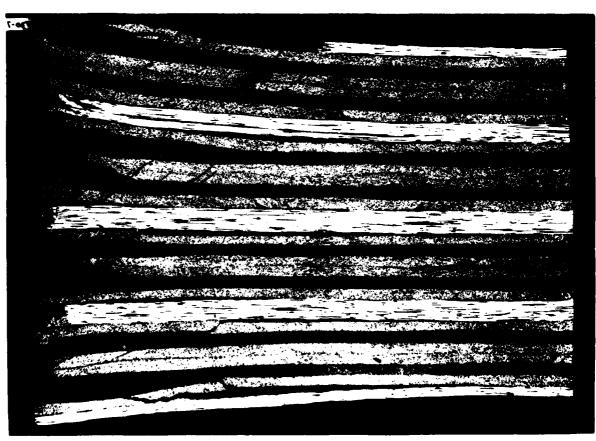

LOCATION: 1.24 IN. DAMAGE LENGTH: 0.764



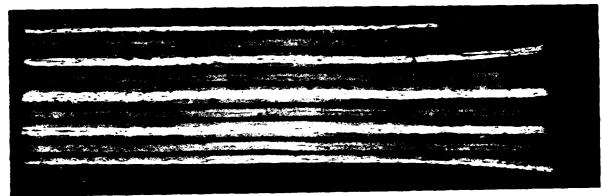
J30-6-1A 25)

LOCATION: 1.34 IN. DAMAGE LENGTH: 0.967





J30-6-2B 25X


LOCATION: 1.34 IN. DAMAGE LENGTH: 0.967

25<u>Y</u>

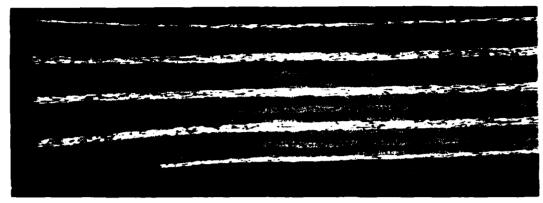
LOCATION: 1.05 IN. DAMAGE LEMOTH: 1.102

J30-7-1B

130-7-2F

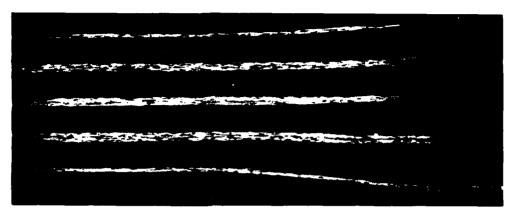
25<u>Y</u>.

LOCATION: 1.05 IN. DAMAGE LENGTH: J.192

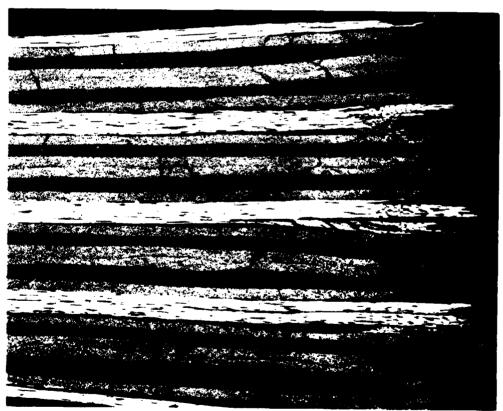

J30-8-1A 19X

J30-8-2A

LOCATION: 1.54 IN. DAMAGE LENGTH: 0.850

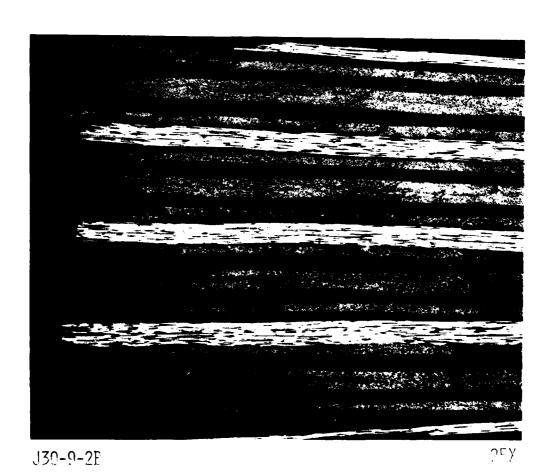


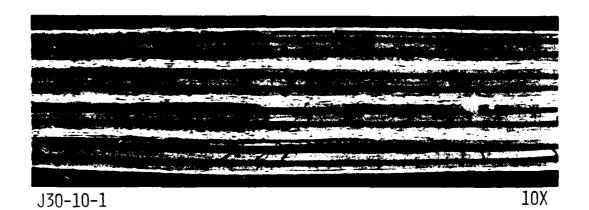
J30-8-1B 10X

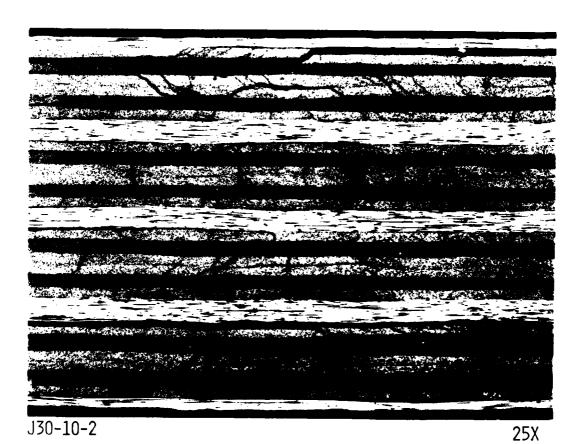


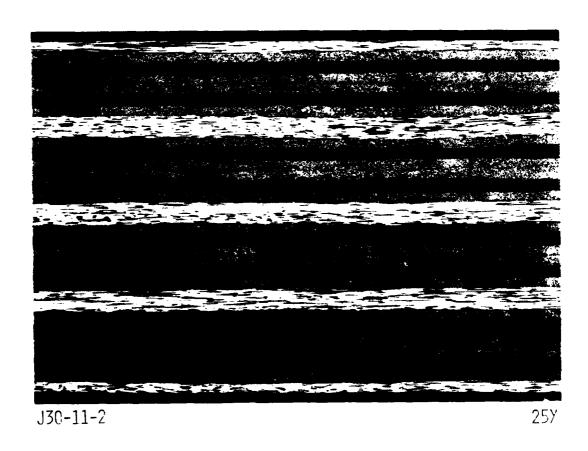
J30-8-2P 25 X

LOCATION: 1.54 IN. DAMAGE LENGTH: 0.850

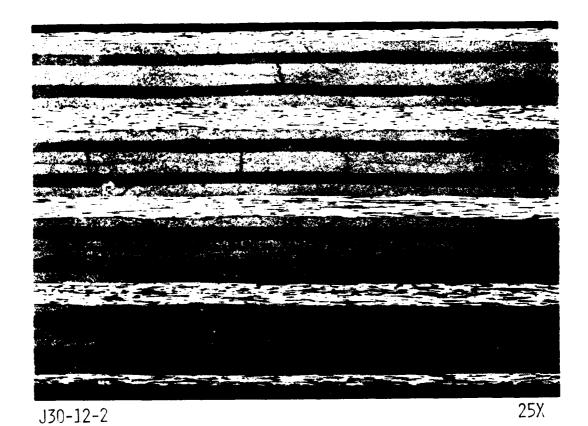

J30-9-1A 10X

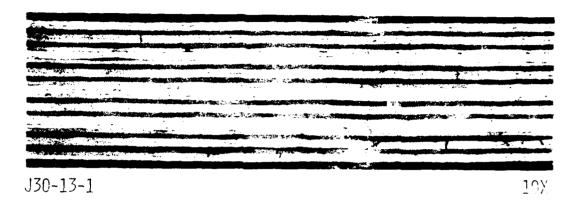

J30-9-2A 25X

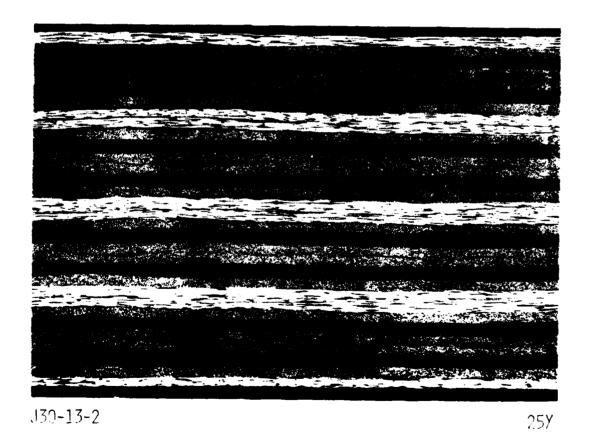

LOCATION: 1.64 IN. DAMAGE LENGTH 0.843


LOCATION: 1.64 IN. DAMAGE LENGTH 0.842

LOCATION: 1.74 IN. DAMAGE LENGTH: 0.781

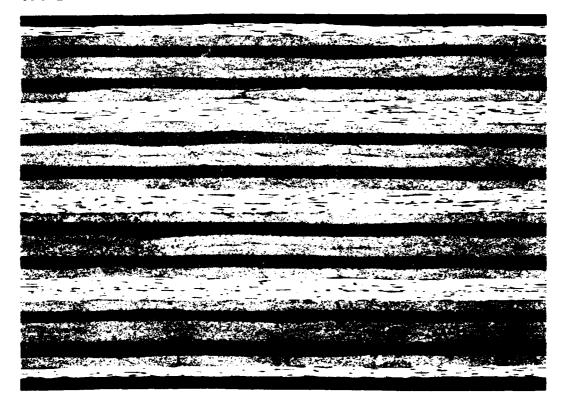


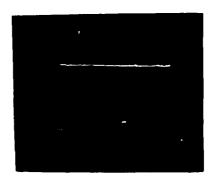

LOCATION: 1.84 IN. DAMAGE LENGTH: 0.762



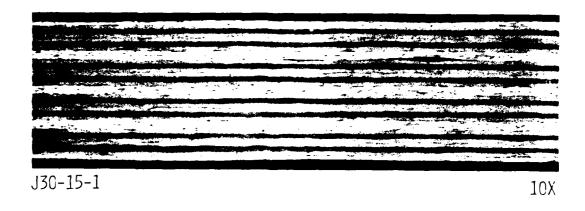
J30-12-1

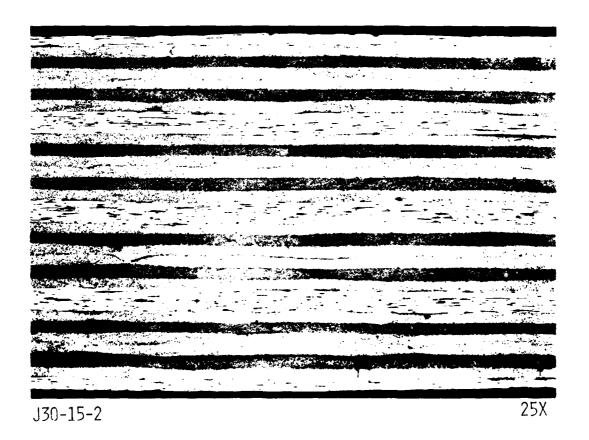
LOCATION: 1.94 IN. PAMAGE LENGTH: 0.743

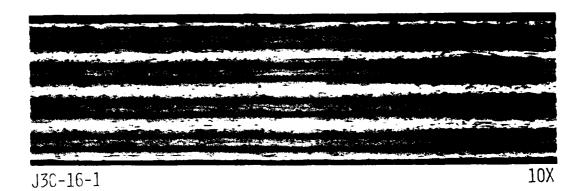


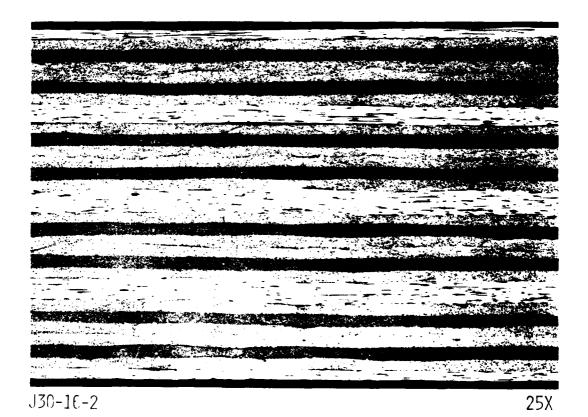

LOCATION: 204 IN. PAMAGE LENGTH: 0.658

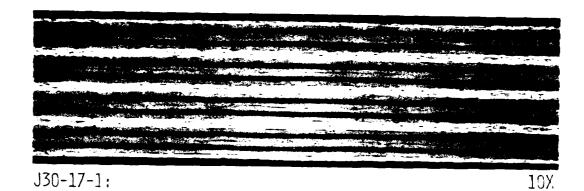
J30-14-1

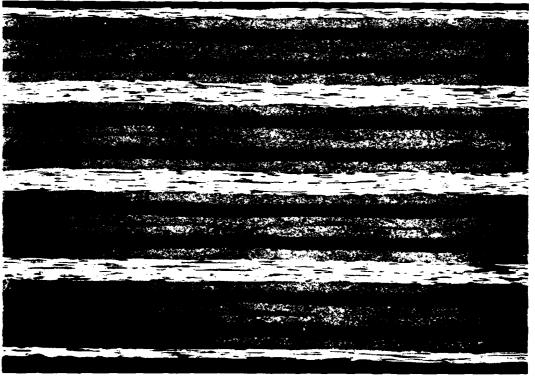


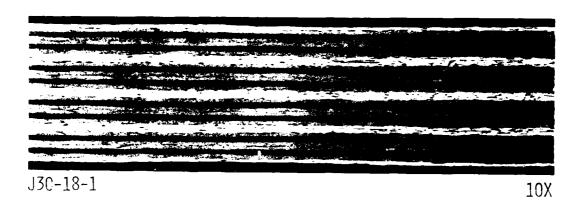

J30-14-2

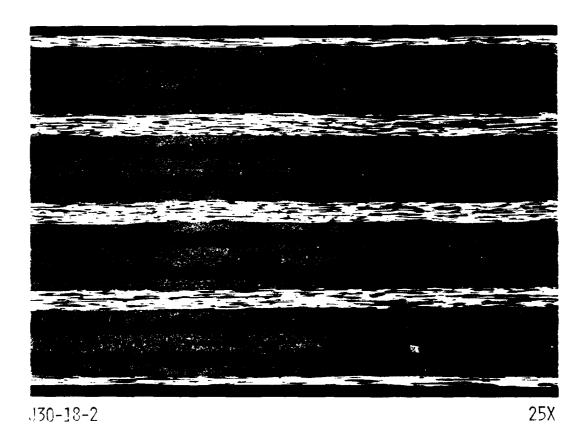

B-SCAN AT 2.16 IN.

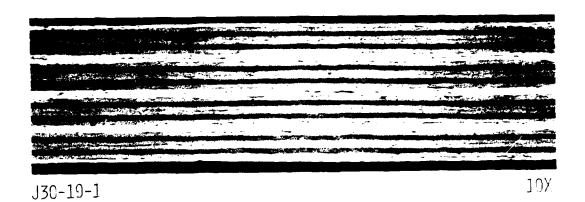

LOCATION: 2.14 IN. DAMAGE LENGTH: 0.577




LOCATION: 2.24 IN. DAMAGE LENGTH: 0.280


LCCATICH: 2.34 IN. DAMAGE LENGTH: ONE TRANS PLY CRACK




25X.


THE PENCTURE OUR TRANS PLY PRACK

LOCATION: 2.54 IN. DAMAGE LENGTH: ONE TRANS PLY CRACK

LOCATION: 2.64 IN. DAMAGE LEMOTH: No PAMAGE

APPENDIX H

Comparison of Damage as Determined by Holscan Ultrasonic C-Scan and DIB Enhanced X-ray

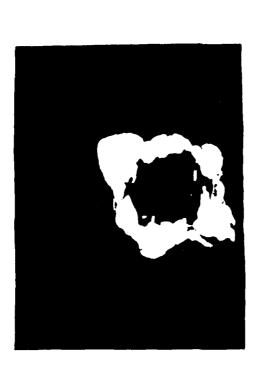


FIGURE H1: SPECIMEN NO. EB-14 N = 4,000 CYCLES

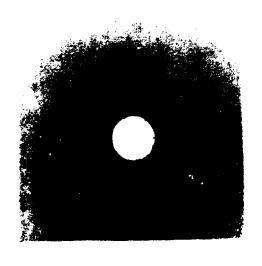



FIGURE H2: SPECIMEN NO. IA-5 N = 4,000 CYCLES 24-PLY

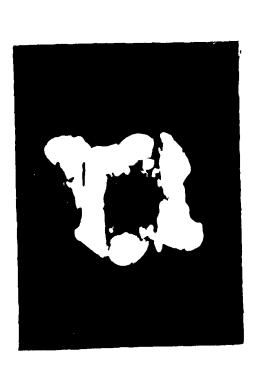
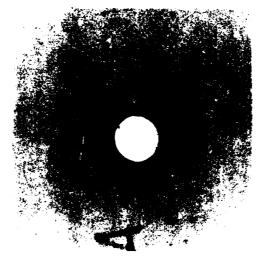



FIGURE H3: SPECIMEN NO. FA-6 N = 8,000 CYCLES 24-PLY

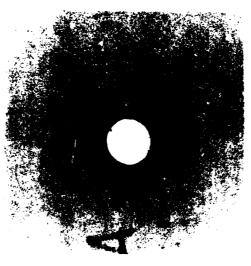


FIGURE H4: SPECIMEN NO. HA-8 N = 12,000 CYCLES 24-PLY



FIGURE H5: SPECIMEN NO, GC-23 N = 20,000 CYCLES

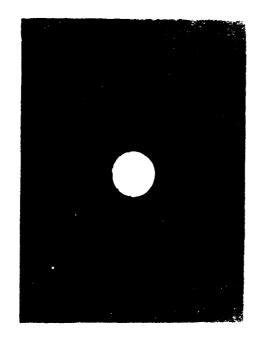


FIGURE H6: SPECIMEN NO. 0A-4 N = 1,000 CYCLES

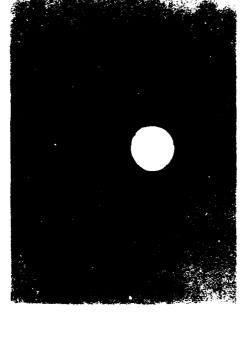
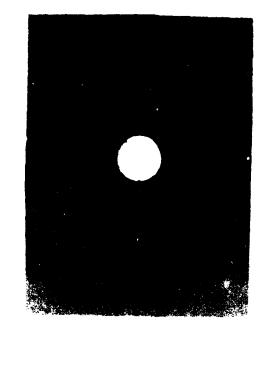



FIGURE H7: SPECIMEN NO. RC-29 N = 1,000 CYCLES 32-PLY

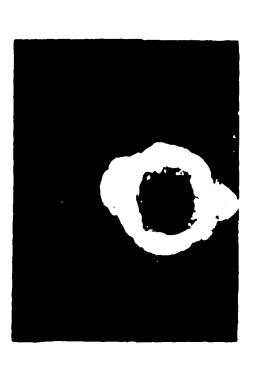


FIGURE H8: SPECIMEN NO. RB-19 N = 5,000 CYCLES

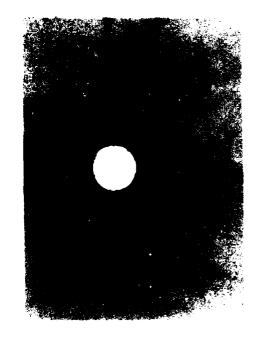
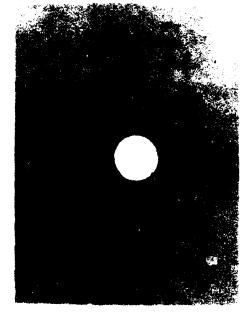



FIGURE H9: SPECIMEN NO, PC-21 N = 10,000 CYCLES

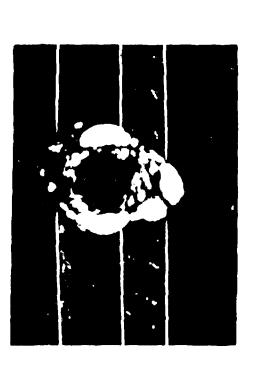
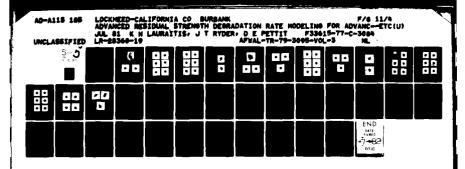
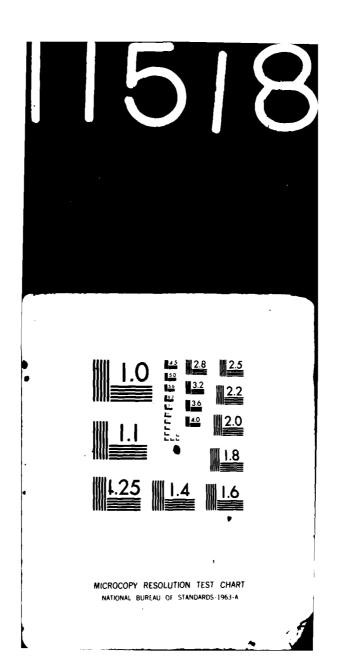
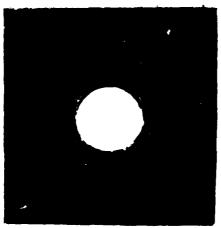
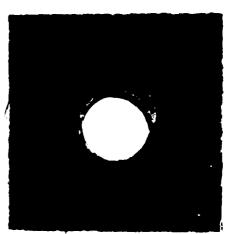





FIGURE H10: SPECIMEN NO, QC \div 24 N = 28,000 CYCLES 32-PLY



APPENDIX I


Damage on Individual Layers of Specimens Deplied after Fatigue Cycling

I-5-1 PLY 1 0°

I-5-2 PLY 2 45°

I-5-3 PLIES 3 & 4, 0°

Figure Ila: Deplied 24-Ply Specimen IA-5 After 4,000 Cycles (Plies 1 - 3)

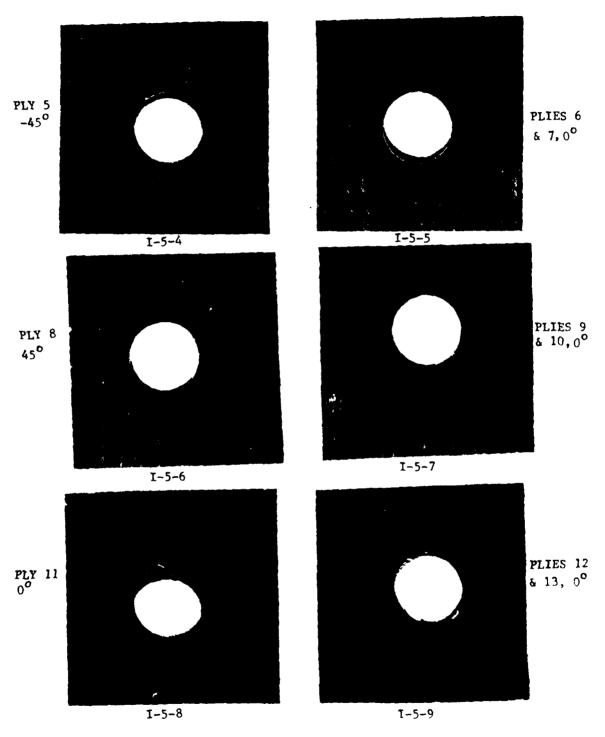


Figure Ilb: Deplied 24-Ply Specimen IA-5 After 4,000 Cycles (Plies 4 - 9)

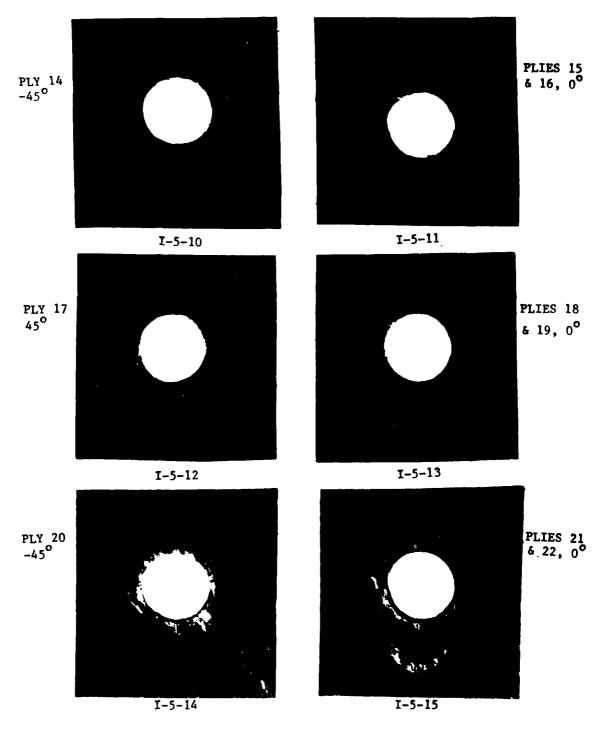
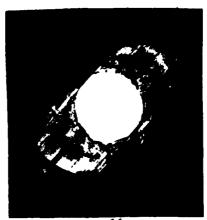
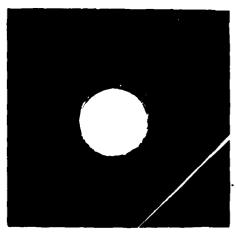
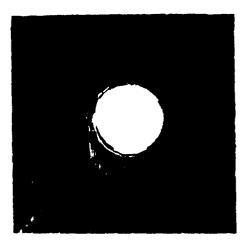



Figure Ilc: Deplied 24-Ply Specimen IA-5 After 4,000 Cycles (Plies 10 - 15)

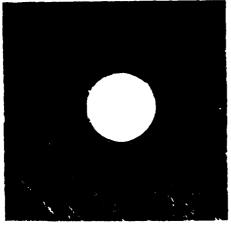
1-5-16 PLY 23, 45°



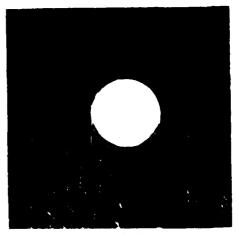
I-5-17 PLY 24,0°


Figure Ild: Deplied 24-Ply Specimen IA-5 After 4,000 Cycles (Plies 15 - 17)

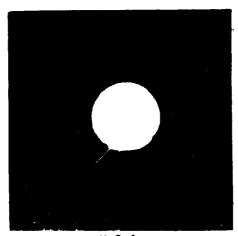
H-8-1 PLY 1, 0°



H-8-2 PLY 2, 45°



H-8-3 PLIES 3 & 4, 0°

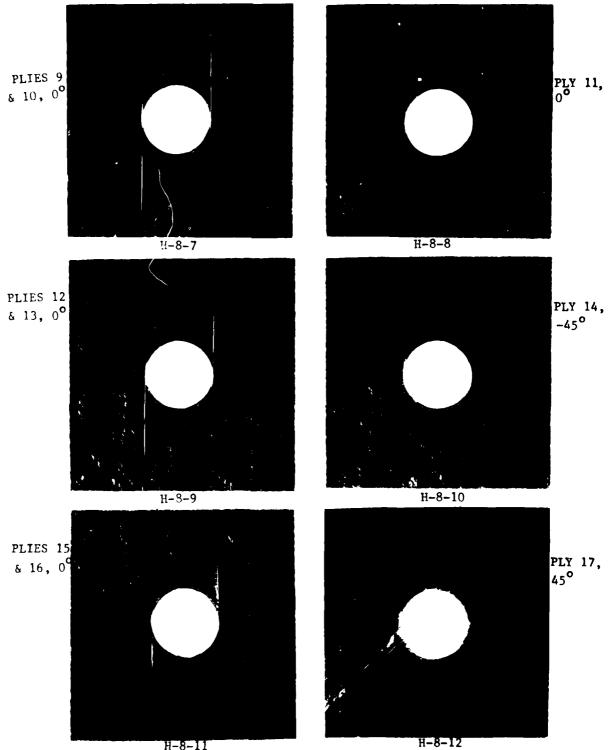
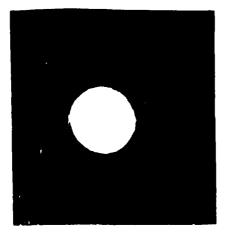

Figure I2a: Deplied 24-Ply Specimen HA-8 After 12,000 Cycles (Plies 1 - 3)

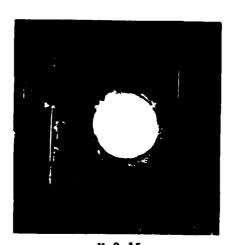
H-8-4 PLY 5, -45

H-8-5 PLIES 6 & 7, 0°

H-8-6 PLY 8, 45°

Figure 12b: Deplied 24-Ply Specimen HA-8 After 12,000 Cycles (Plies 4 - 6)


Figure I2c: Deplied 24-Ply Specimen HA-8 After 12,000 Cycles (Plies 7 - 12)

H-8-13
PLIES 18 & 19, 0°



H -8-14 PLY 20, -45°

H-8-15
PLIES 21 & 22, 0°

Figure 12d: Deplied 24-Ply Specimen HA-8 After 12,000 Cycles (Plies 13 - 15)

PLY 23, 45°

PLY 24, 0°

Figure I2e: Deplied 24-Ply Specimen HA-8 After 12,000 Cycles (Plies 15 - 17)

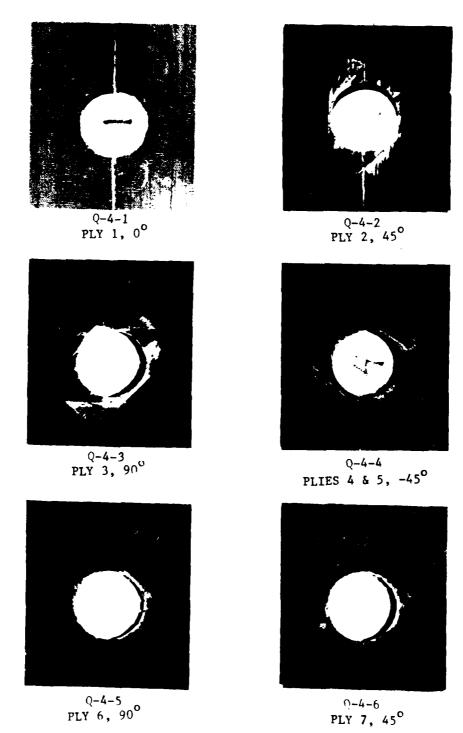


Figure I3a: Deplied 32-Ply Specimen 0A-4 After 1,000 Cycles (Plies 1 - 6)

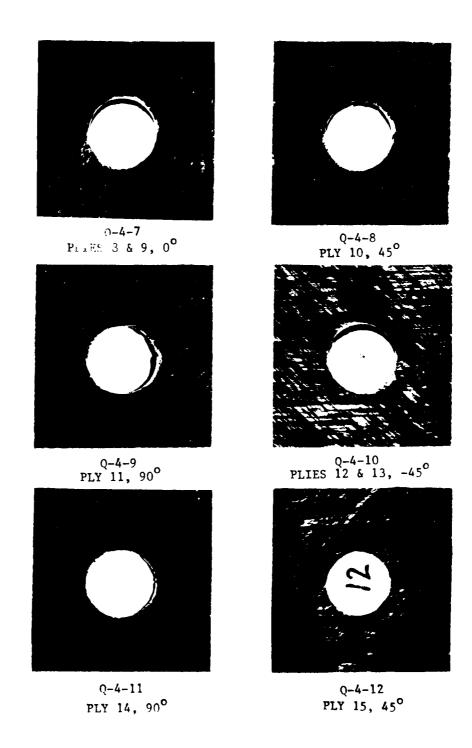


Figure I3b: Deplied 32-Ply Specimen QA-4 After 1,000 Cycles (Plies 7 - 12)

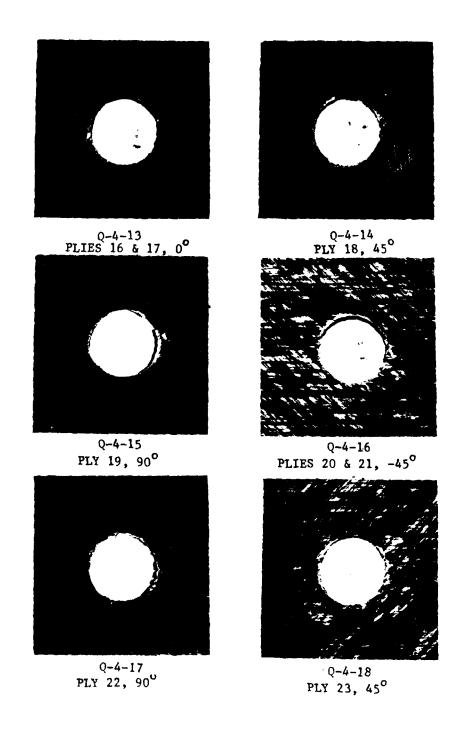
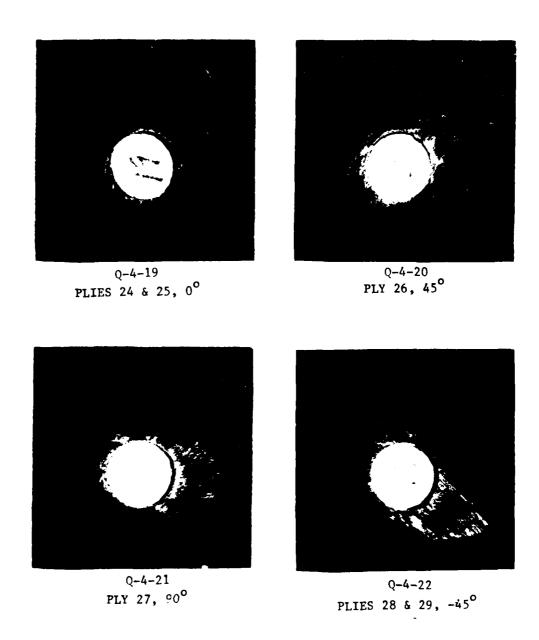


Figure I3c: Deplied 32-Ply Specimen QA-4 After 1,000 Cycles (Plies 13 - 18)



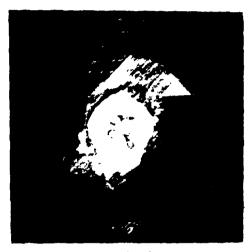


Figure I3d: Deplied 32-Ply Specimen QA-4 After 1,000 Cycles (Plies 19 - 22)

Q-4-23 PLY 30, 90°

Q-4-24 PLY 31, 45°

Q-4-25 PLY 32, 0°

Figure 13e: Deplied 32-Ply Specimen QA-4 After 1,000 Cycles (Plies 23 - 25)

APPENDIX J

Statistical Analysis of Panel Variability

APPENDIX J STATISTICAL ANALYSIS OF PANEL VARIABILITY

Due to the large number of specimens required for Task II, nine panels of each laminate type were fabricated. Considerable care was taken to produce panels under nearly identical conditions. All foreseeable variables were evaluated and specimens not meeting strict tolerance requirements were discarded as discussed in Volume I. The Task II static data were evaluated using several statistical procedures to determine whether the nine panel samples can be assumed to have come from the same population. Static data were normalized on the mean for each group of tests outlined in Test Plan Items 1-4, 6, 7 and 9 (See Table II of Vol. II). These results are presented in rank order by panel in Tables J1 and J2. The Wald-Wolfowitz (J1) test which determines whether two samples come from populations having identical cumulative distribution functions was performed for the 24-ply and 32-ply panel data sets.

The two series of data points from 24-ply panels A and D, having the lowest and highest means, respectively were pooled in rank order. If the strength value was from panel A, a 0 was entered, if from panel D, a 1. This resulted in the following array for the combined 34 data points.

$$\frac{1}{0} \quad \frac{2}{0} \quad \frac{3}{0} \quad \frac{4}{0} \quad \frac{5}{1} \quad \frac{6}{1} \quad \frac{7}{1} \quad \frac{8}{1} \quad \frac{9}{0} \quad \frac{10}{0} \quad \frac{11}{0} \quad \frac{12}{0} \quad \frac{13}{0} \quad \frac{14}{0} \quad \frac{15}{0} \quad \frac{16}{1} \quad \frac{17}{0} \quad \frac{18}{0} \quad \frac{19}{1} \quad \frac{20}{0} \quad \frac{21}{1} \quad \frac{22}{0} \quad \frac{23}{0} \quad \frac{24}{0} \quad \frac{25}{1} \quad \frac{26}{0} \quad \frac{27}{0} \quad \frac{28}{1} \quad \frac{28}{0} \quad \frac{21}{0} \quad \frac{28}{0} \quad \frac{21}{0} \quad \frac{21}{0$$

If $/u - \overline{u}/\stackrel{>}{=} \sigma_u + t_{\alpha/2}$, the hypothesis that the two samples come from populations having identical cumulative distribution functions (c.d.f's) is rejected at the α level; where u is the number of runs and \overline{u} and σ_u^2 are the mean and variance of u respectively. For this case $/u - \overline{u}/= 5.76$ and $\sigma_u^2 + 5.55$. Therefore, the hypothesis is rejected at the 5% risk of error.

Table Jl Normalized Static Data Rank Ordered By
Panel for the 24-Ply Laminate - Task II

PANEL IDENTIFICATIONS:

	A	В	С	D	E	F	G	Н	I
1.	0.813	0.932	0.927	0.928	0.837	0.870	0.897	0.837	0.925
2.	0.871	0.974	0.967	0.931	0.890	0.893	0.939	0.901	0.953
3.	0.915	0.981	0.968	0.932	0.933	0.893	0.947	0.910	0.955
4.	0.923	0.986	0.971	0.955	0.960	0.919	0.960	0.911	0.957
5.	0.962	0.987	0.975	0.991	0.964	0.943	0.984	0.947	0.975
6.	0.968	0.996	0.978	1.000	0.976	0.977	0.986	0.955	0.989
7.	0.968	1.011	0.986	1.009	0.983	0.980	0.986	0.964	0.993
8.	0.973	1.014	0.989	1.021	0.995	0.990	0.992	0.965	0.994
9.	0.975	1.016	0.992	1.070	0.999	0.995	0.994	1.018	1.008
10.	0.980	1.018	0.994	1.071	1.010	0.997	0.997	1.019	1.011
11.	0.990	1.022	1.009	1.073	1.011	1.014	1.000	1.034	1.014
12.	0.993	1.025	1.012	1.075	1.020	1.016	1.007	1.077	1.017
13.	0.999	1.033	1.019	1.087	1.033	1.024	1.018	1.174	1.018
14.	1.002	1.044	1.057	1.100	1.039	1.030	1.040		1.019
15.	1.013	1.065	1.067	1.144	1.071	1.035	1.048		1.038
16.	1.014	1.083	1.104		1.094	1.046	1.050		1.091
17.	1.020		1.140		1.126	1.062	1.052		
18.	1.034					1.062	1.065		
19.	1.035					1.110	1.076		
20.						1.132	1.114		
$\overline{\mathbf{x}}$	0.971	1.012	1.009	1.026	0.997	0.999	1.008	0.978	0.997
SD	0.056	0.037	0.054	0.069	0.071	0.070	0.052	0.087	0.040
CV%	5.81	3.61	5.38	6.71	7.08	7.01	5.13	8.92	3.97

a = Includes all test data from Task II Test Plan Items 1-4, 6, 7 and 9
 (See Table II of Vol. II)

NOTE: \overline{X} = Mean, SD = Standard Deviation, CV% = Coef. of Var. X

Table J2 Normalized Static Data Rank Ordered By
Panel for the 32-Ply Laminate - Task II

PANEL IDENTIFICATIONS:

	J	K	L	M	N	P	Q	R	s
1.	0.883	0.947	0.882	0.878	0.782	0.927	0.913	0.904	0.857
2.	0.897	0.953	0.937	0.898	0.918	0.967	0-927	0.919	0.920
3.	0.919	0.960	0.956	0.938	0.934	0.972	0.942	0.923	0.924
4.	0.928	0.962	0.969	0.953	0.939	0.976	0.945	0.929	0.939
5.	0.939	0.965	0.972	0.954	0.949	0.983	0.947	0.933	0.954
6.	0.953	0.976	0.977	0.961	0.958	0.985	0.963	0.943	0.954
7.	0.965	0.977	0.978	0.971	0.960	0.995	0.964	0.948	0.956
8.	0.988	0.980	0.979	0.987	0.965	0.995	0.965	0.964	0.986
9.	0.993	0.989	1.006	0.987	0.979	1.006	0.968	0.964	0.989
10.	0.998	0.990	1.008	0.997	0.981	1.007	0.968	0.983	0.990
11.	0.999	0.991	1.009	1.008	0.984	1.019	0.995	0.987	0.991
12.	1.003	0.997	1.026	1.028	0.985	1.031	0.999	1.006	0.992
13.	1.009	1.004	1.030	1.059	1.001	1.039	1.007	1.007	1.000
14.	1.015	1.008	1.030	1.065	1.002	1.044	1.018	1.019	1.006
15.	1.019	1.009	1.035	1.068	1.004	1.050	1.059	1.031	1.009
16.	1.050	1.012	1.055	1.085	1.008	1.051	1.063	1.035	1.012
17.	1.053	1.018	1.061	1.102	1.014	1.087	1.064	1.049	1.038
18.	1.073	1.025	1.062	1.157	1.016	1.091	1.079	1.085	1.053
19.	1.076	1.043	1.080	1.176	1.045	1.120	1.082	1.117	
20.		1.049			1.062	1.156	1.168	1.154	
21.		1.144			1.072				
22.		1.192			1.140				
$\overline{\mathbf{x}}$	C.987	1.009	1.003	1.014	0.986	1.025	1.002	0.995	0.976
SD	0.056	0.059	0.049	0.081	0.068	0.056	0.065	0.069	0.047
CV%	5.72	5.83	4.92	8.01	6.92	5.50	6.52	6.89	4.80

a = Includes all test data from Task II Test Plan Items 1-4, 6, 7 and 9
(See Table II of Vol. II)

NOTE: \overline{X} = Mean, SD = Standard Deviation, CV% = Coef. of Var. %

However, the hypothesis cannot be rejected at the same level when the test is performed on the second highest (B) and second lowest (H) panels.

Performance of the Wald-Wolfowitz test on the 32-ply panels having the lowest (S) and highest (P) means yields the following array for the combined 38 data points:

where a 0 was entered if the value came from panel S and 1 if from D. Here $/u - \bar{u}/= 3.95$ and $\sigma_u t_{\alpha/2} = 5.94$. Hence, the hypothesis that the samples have identical c.d.f.s cannot be rejected for a risk of error of 5%. For the 32-ply panels, then, it appears likely that the strength data for all of the panels belong to the same population.

Since 24-ply panels A and D appeared to have different c.d.f's several additional tests were performed.

Applying the Chi-squared test to samples A and D indicates that there is a high probability (at α = 0.05) the distributions are normal. Thus the F-test and T-test were then applied.

The quantity F is the ratio of the two sample variances,

$$F = S_A^2 / S_D^2$$

If the variances of samples A and D are identical at a significance level of α = 0.05, F should be between the boundaries defined by $F_{0.975}$ and $1/F_{0.975}$, for N_A-1 and N_D-1 degrees of freedom. F does lie in this interval since F = 0.670, $1/F_{0.975}$ = 0.37 and $F_{0.975}$ = 2.88. Thus the variances can be assumed to be the same within 0.05 risk of error. This indicates

the two samples may belong to the same population, i.e. have the same scatter or dispersion.

The T-test was used to determine whether the means differ significantly. The absolute differences between the means is calculated by:

$$D_{\overline{x}} = /\overline{x}_{A} - \overline{x}_{D}/$$

If the means do not differ, D_{x} should not exceed u where

$$u = t_{0.975} S_{PV} \sqrt{\frac{n_{A} + n_{D}}{n_{A} n_{D}}}$$

for α = 0.05. For this case $D_{\overline{x}}$ = 0.055 and u = 0.0438. Since $D_{\overline{x}}$ >u there is reason to believe samples might not be from the same population.

Based on these three tests, Wald-Wolfowitz, F-test and T-test the statement cannot be made that panel A and D data have the same cumulative distribution functions within ε 0.65 risk of error.

This does not necessarily mean that the samples are from different populations although that possibility is definitely suggested. assumptions implicit in this type of statistical evaluation must be No attempt was made to include fatigue data because the failure modes differ. However, all static data including tension, compression at high and low strain rates and residual strength data were normalized and combined. This in itself is a questionable procedure. Variables affecting stability under compression loading will not necessarily influence tension strength similarly especially for different strain rates and damage sizes. Data were pooled in order to obtain an adequate sample size to perform some evaluation of panel variability. If the data pooling were acceptable, it appears that except for the 24-ply panels A & D, all other panels are statistically identical. the 24-ply panels were ranked by mean strength from low to high (A, H, E,

I, F, G, C, B, D) all adjacent panels would be identical. The panels form a smooth distribution with A and D at the tails. Thus a single "bad" panel cannot be identified.

APPENDIX K
DISCUSSION OF WEIBULL FUNCTION
AND PARAMETER ESTIMATION PROCEDURES

APPENDIX K

K.1 GENERAL DISCUSSION OF WEIBULL FUNCTION

In Weibull's representation of the statistics of fatigue, there are two random variates at each stress test condition. The first of these variates is the ordered sequence of the numbers of cycles to failure for each test result, n_i :

$$n_{i}: (n_{1}, n_{2}, n_{3}, \dots, n_{N})$$

The second random variate, x, is continuous and is the argument of the Weibull survivorship function, or probability of survival, expressed as

$$P(x) = \exp \left[-((x-e)/(v-e))^{k}\right],$$
 (K1)

where

or

$$x \ge e, v \ge e, k > 0, P(e) = 1, P(v) = 1/exp(1)$$

The connection between the random variates, n_i and x, is entirely empirical. In practice, numerical procedures are used to derive the three Weibull parameters k, e, and v by means of the approximation:

$$P(x) = 1 - i/N \text{ when } x = n_i,$$
 (K2)
 $P(x) = 1 - i/(N + 1).$

For Equation K1, the mean of the sample set is given by K1:

$$\bar{x} = e + (v-e) \Gamma(1 + 1/k)$$
 (K3)

the median by:

$$u = e + (v-e)(\log_e 2)^{1/k}$$
 (K4)

and the mode by:

$$\ddot{x} = e + (v-e)(1-1/k)^{1/k}$$
 (K5)

where Γ () indicates the Gamma function.

During the past twenty-five years, a number of names have been applied to the parameters. In general, parameters e an v are considered as scale parameters or factors and the exponent k as a shape parameter. The term threshold parameter is usually applied to parameter e and the term characteristic value to v. In analysis of composite data, k is frequently denoted by α and v by \hat{F} . The scale parameter, e, is often referred to as the minimum life estimate. With this choice of words, e is suggested on physical grounds to be e \geq 0. Many authors have reasoned further that since e << n_i, i = 1, 2, 3, . . . N, the Weibull survivorship function can be appropriately reduced to dependence on two parameters, k and v, with e = 0 arbitrarily. An argument against this practice will be described in this section.

The influence of the shape parameter k can be explained as follows. Define a reduced variate Z as:

$$Z = (x-e)/(v-e), Z \ge 0, dimensionless,$$
 (K6)

and express the probability of survival function as:

$$P(x) = \exp \left[-z^{k}\right], k > 0, \tag{K7}$$

where

$$P(Z) = 1/\exp(1)$$
 when $Z=1$

If k < 1, this is sometimes interpreted as implying that the material develops resistance to fatigue as the number of load cycles is increased. If k = 1, the Weibull survivorship function reduces to the constant failure rate relation commonly used in reliability studies. If k > 1, one can inquire whether the test material experiences progressive damage as numbers of load cycles are increased.

Figure K1 illustrates the manner in which P(Z) is dependent on the shape parameter k for the range of the reduced variate Z from zero to two. Empirical evidence does not support the interpretation that k might be a smoothly increasing function of stress amplitude. For practical purposes, in the case of structural fatigue, the region of Figure K1 of most interest to designers is bounded as follows:

- (a) Above by the limit P(Z) = 1.0
- (b) Below by the median P(Z) = 0.5
- (c) On the left by the curve $P(Z) = \exp[-Z]$
- (d) On the right by the curve $P(Z) = \exp \left[-Z^{10}\right]$.

K.2 WEIBULL ANALYSIS PROCEDURES

There are three principal procedures which have been used to determine the Weibull parameters (k, e, and v) for a given data set. These are: the moment estimation (ME) method; the maximum likelihood estimation (MLE) procedure; and some form of the linear regression (LR) procedure. All three methods are also used to determine the unknown parameters of other types of fitting functions. The ME method principally consists of equating several population moments (equal to the number of unknown parameters) to the sample

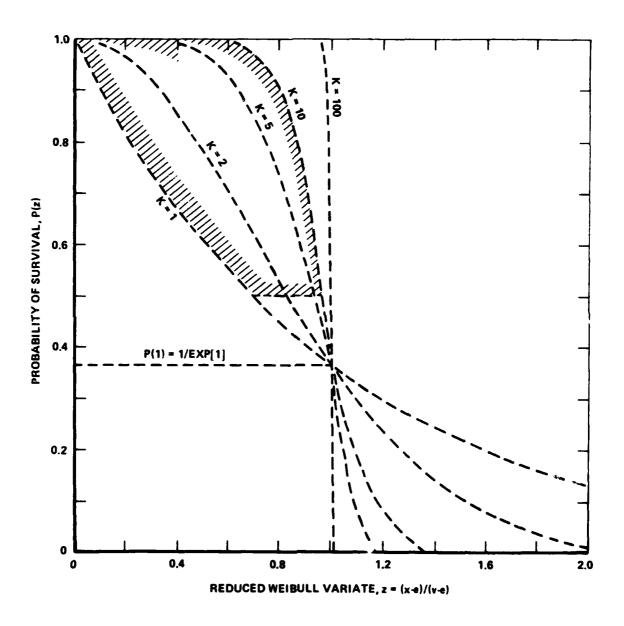


Figure K1 - Influence of shape parameter k on probability of survival

moments. The MLE method consists of setting the partial derivatives of the logarithm of P(X), with respect to the parameters sought, equal to zero. In the LR procedure, the Weibull survivorship function is reduced to a linear equation. For the LR method, the solution for a two-parameter Weibull function is straightforward, but in the three-parameter case the solution is found by optimization of the correlation coefficient or by matching the sample skewness coefficient.

When one of the above described procedures was originally selected K2 for analyzing graphite/epoxy composite strength and fatigue data, consideration was given to two thoughts. First, how well does the resultant Weibull survivorship function represent the original data set? Second, what, if any, extrapolative potential exists for the resultant function? Consideration of these two questions led to the selection of the LR procedure. The reasons for this selection will be described in detail along with references to recent work which supports the original choice.

Both the ME and MLE methods require homogeneous samples. The reason for this requirement is that in the ME procedure the Weibull density function is integrated while in the MLE procedure, partial derivatives of the function are obtained. In this program, requirement of homogeneity was not assumed, a priori, to be necessarily met by sample information obtained from fracture data of composites. A procedure was desired which would be sensitive to the possible existence of multicomponent strength and fatigue life data. Such a requirement appears to be met by a LR procedure K3 . The ME method can result in significant errors in estimation of k, e, and K3 and such errors increase as k increases. In the case of two-parameters, errors in estimation of k and v increase linearly with the true value of e (assumed to be zero) and can be greater than 100% when $e \geq v^{K3}$. For the MLE procedure, three difficulties are encountered. First, the MLE solution of a data set is often a local maximum, but is not necessarily the maximum likelihood estimate $^{K1-K7}$. Weibull and Weibull K3 found in a study of 300 random samples

of 10 and 20 points each that approximately half of the estimates were not the maximum likelihood estimate, but were local maximums. Second, valid data sets can occur for which convergent solutions are not forthcoming, particularly for three parameter solutions K7 . Third, if a given data set which actually belongs to a three-parameter Weibull population is assumed to be a two-parameter population (e = 0), the estimates of k and v can be significantly higher than their true values K3 .

As previously alluded to in the analysis of graphite/epoxy composite data, the parameter e is often set equal to zero. This practice greatly simplifies the mathematics especially for MLE procedures; however, there are strong objections against such a practice $K^{1,K3,K7}$. These have already been discussed with reference to the ME and MLE procedures and are based upon the statistical error induced by the practice of setting e = 0. In summary, the three-parameter Weibull fit can be shown to fit the actual data set better than the two-parameter K2, K3, K7 However, objections against the three-parameter Weibull fitting procedure are often raised upon the grounds that the parameter e may be found to have a negative value, particularly for a fatigue data set. The objection is thus raised that actual coupons can not have a finite probability of failure when the applied load is zero. Setting e equal to zero solves this problem. Setting e equal to zero is principally related to the question of the extrapolative capability of the Weibull function for graphite/epoxy composite fracture data.

Setting e = 0 results in the probability of survival, P_s , being equal to 1 when no load is applied to a coupon. While this is a reasonable expectation, the accuracy of fit in the range of the data is often sacrificed. At the same time, the resultant extrapolative estimates of strength and fatigue life at $P_s > 0.90$ may still be intolerably conservative. Therefore, in many cases by setting e = 0 little may be gained, and much lost. This problem is most critical for fatigue life data.

The problem of correctly extrapolating composite fatigue data is presently one of conjecture. This is due to three deficiencies: 1) lack of large laboratory data sets for evaluating extrapolation from small subsets; 2) lack of experimental data which correlates laboratory coupon results with structural test results; 3) lack of field service experience. Therefore, while e should be greater than or equal to zero if it is truly a threshold parameter, correct values can not be determined at this time. Thus, setting e = 0 reduces the accuracy of our calculated fit to the data set but most likely results in extrapolative predictions being too conversative.

A possible solution to these problems has been suggested by Bowie, Besari, and Trapp^{K7} and will be discussed below. The resultant analytical solutions closely fit the data and avoid the problems of ME and MLE solution procedures. The resultant functions are not of extrapolative value, but this is not considered to be pertinent for comparison of data sets. Significant statistical analysis effort combined with extensive experimental investigations are needed before any extrapolative procedure can be developed and used with confidence. Hence, using a procedure which does not allow for extrapolation is not considered at the present time to be detrimental.

K.3 DESCRIPTION OF SELECTED ANALYSIS PROCEDURE

The particular form of Weibull analysis used in this report has been discussed in detail elsewhere K7 , K8 . Essentially, this procedure which consists of linear regression analysis in Z variate space, is similar to that used by Talreja K3 . The analysis procedure used is described in this section.

In the analytic procedure used in this program, an initial estimate was made of the probability of survival based directly on the test results, in a staircase manner, $P(n_i)$, $i = 1, 2, 3, \ldots N$,

where

$$P(n_1) = 1-1/N$$

 $P(n_2) = 1-2/N$
 $P(n_3) = 1-3/N$
. . .
. . .
 $P(n_N) = 1-N/N = 0$.

The function $P(n_j) = 1 - i/N$ was selected instead of the alternate function, $P'(n_i) = 1 - i/(N+1)$. The difference $(P'(n_i) - P(n_i))$ diminishes as N increases. Thus for N equal to or greater than approximately 15, the difference is undetectable. However, if extrapolations to probability of survival in the range above 90% are to be attempted, the choice of $P(n_i)$ rather than $P'(n_i)$ as initial distribution is the more conservative approach R. This is especially true for N less than 15.

With the above approach, the initial distribution is defined as:

$$P(n_i) = 1 - i/N$$

and

$$P(n_{i+1}) = 1 - i/N \text{ if } n_{i+1} = n_i$$

otherwise

$$P(n_{i+1}) = 1 - (i+1)/N$$

In most other analysis procedures, $P'(n_i) = 1 - i/(N+1)$ is selected as the initial description without regard to replication of the type: $n_{i+1} = n_i$. The choice of assigning the same initial probability to different coupons with the same n_i was considered appropriate because they do actually form a local mode, within the limits of testing accuracy, of the sample distribution obtained by experiment.

The appropriate variables of Equation K1 are found by forming N-1 relations:

$$P(n_{1}) = 1-1/N = \exp \left[-((n_{1}-e)/(v-e))^{k}\right]$$

$$P(n_{2}) = 1-2/N = \exp \left[-((n_{2}-e)/(v-e))^{k}\right]$$

$$\vdots$$

$$\vdots$$

$$P(n_{N}) = 1-(N-1)/N = \exp \left[-((n_{N-1}-e)/(v-e))^{k}\right]$$
(K8)

The last relation for N is not used since P(N) = 0.

The parameters of Equation 1 were found by reducing the relationships of Equation 8 to the linear equation:

$$Y = bX + a \tag{K9}$$

The three-parameter Weibull linear equation is:

and v = (1+be)/b.

For the two-parameter Weibull function (e = 0), the linear equation is:

$$\ln(-\ln(p(X))) = \ln(x) + a,$$
 (K11)
 $k = b$

and $v = \exp(-a/b)$.

where

A linear regression method is used to determine k, e, and v. The initial

order distribution is:

$$P(X_i) = 1-i/N_p, i = 1, 2, 3 ... N_p$$
 (K12)

Regression coefficients are found by least square analysis of $N_{\mbox{\scriptsize p}}$ -1 equations such as:

$$\left[-\ln (1-i/N_p)\right]^{1/k} = bX_i + a, i = 1, 2, 3 ... N_p-1.$$
 (K13)

The sample correlation coefficient, R, is calculated as:

$$R = \frac{M \sum_{i=1}^{m} Y_{i}(aX_{i} + b) - \sum_{i=1}^{m} Y_{i} \sum_{i=1}^{m} (aX_{i} + b)}{\left[\left\{M \sum_{i=1}^{m} Y_{i}^{2} - \left(\sum_{i=1}^{m} Y_{i}\right)^{2}\right\} \right]^{1/2}}$$

where $M = N_p - 1$

The coefficients of linear regression and alternative correlation coefficient r are calculated by means of the following steps:

$$Sx = \left[\frac{M}{M} \sum_{i=1}^{M} x_i^2 - \left(\sum_{i=1}^{M} x_i \right)^2 \right]^{1/2}$$

$$Sy = \left[\frac{M \sum_{i=1}^{M} Y_{i}^{2} - \left(\sum_{i=1}^{M} Y_{i} \right)^{2}}{M (M-1)} \right]^{1/2}$$

$$b = \frac{M \sum_{i=1}^{M} x_{i} Y_{i} - \left(\sum_{i=1}^{M} x_{i}\right) \left(\sum_{i=1}^{M} Y_{i}\right)}{M \sum_{i=1}^{M} x_{i}^{2} - \left(\sum_{i=1}^{M} x_{i}\right)^{2}}$$

$$\mathbf{a} = \left(\sum_{i=1}^{M} \mathbf{Y}_{i} - \mathbf{b} \sum_{i=1}^{M} \mathbf{X}_{i}\right) / \mathbf{M}$$

r = b sx/sy

The standard deviation of the linear regression is calculated by means of the expression:

$$s = \left[\frac{(M-1)}{(M-2)} Sy^2 + (1 - r^2) \right]^{-1/2}$$

The values of k, e, and v are found by iterating on 1/k in Equation K13 and maximizing R in Equation K14. An alternative procedure would be to match the sample skewness to the Weibull function skewness by iteration of 1/k. The coefficient of skewness is given by:

$$c.o.s = \frac{\Gamma(1+3/k) - 3\Gamma(1+1/k)\Gamma(1+2/k) + 2\Gamma^{3}(1+1/k)}{(\Gamma(1+2/k) - \Gamma^{2}(1+1/k))^{3/2}}$$
(K15)

and recalling that Γ () denotes the Gamma function.

There are two primary difficulties with the method employed. First, the resultant Weibull functions could be used to imply that in some three-para-

meter cases and at a given extrapolation, high probability of survival (P_S > 0.95), fatigue life decreases as applied stress amplitude decreases. Second, in the case of two-parameter analysis, probability of survival functions tend to predict overly conservative extrapolated fatigue lives. particularly at low applied stress amplitudes. Both of these difficulties refer to the extrapolative capability of the resultant functions. This is not considered a problem for comparing the data sets, and as discussed in Section K.2, extrapolation of the data does not appear to be presently feasible.

K.4 ALTERNATIVE PROCEDURES

or

Two other procedures are available for analyzing fracture data. the Standardized Variable Estimation (SVE) method K3 and the Modified Double Expotential Function (MDEF) method K7.

In the SVE method $^{\mathrm{K3}}$ the standardized variable 2 is defined as in Equation K6 for a Weibull survivorship function or as:

$$Z = \frac{X - e}{v} \tag{K16}$$

for a Weibull probability of failure function. Thus, as mentioned in Section K.1, the order statistics Z_i are independent of e and v and depend only on the shape parameter k. The expected value, EZ_{i} , median, MZ_{i} , and variance, ${\rm VZ}_{i}$, of the order statistic ${\rm Z}_{i}$ have been derived by Lieblein. The characteristic values of Z_i depend only on the sample size, N, and the shape parameter, kK3. From Equation K16, we obtainK3:

$$X_{i} = e + v EZ_{i}$$
 (K17)

 $X_i = e + v EZ_i$ $X_i = e + v MA_i$. (K18)

Equations K17 and K18 can be solved by linear regression.

parameter k is the value for which the correlation coefficient is a maximum K3 . The parameters e and v are found as the X_i - intercept and slope of the best fit line K3 . If the sample data belong to different populations, this will result in the (X_i, EZ_i) and (X_i, MZ_i) scattering about different straight lines K3 .

Talreja K3 found that the SVE method provided accurate estimates of k, e, and v, for low values of k. At higher k values, the method often gives negative estimates of e. The procedure gave more accurate estimates of the parameters than the ME and MLE methods K3 .

The MDEF is based upon the double exponential function of $Gumbel^{K1}$. In this procedure K7 , for a set of sample fatigue lives, N_p , the initial distribution is defined by:

$$P(X_i) = 1 - i/(N_p + 1)$$
 (K19)

and

P(x) by:
P(X) = 1 - Exp [-Exp[-
$$\alpha_{3}$$
 (X-u)]. (K20)

For lives greater than u, the above function is used as described by Gumbel K^1 . For lives less than u, α is a function of the life, X, where:

$$\alpha(X) = \alpha_0 \left[\frac{\ln u - \ln X_0}{\ln X - \ln X_0} \right]$$
 (B21)

The parameter X_O is defined as the threshold fatigue life. For $X \leq X_O$, P_S is defined as equal to unity. The modified double exponential function (MDEF) can be solved by ME, MLE, or LR procedures. The best procedure appeared to be linear regression K7 . The MDEF function was found to not only fit the sample data with high correlations, but to provide procedures for exploration of data extrapolation accuracy K7 .

REFERENCES APPENDIX J AND K

- Burington, R. S. and May, D. C., <u>Handbook of Probability and Statistics</u> with <u>Tables</u>, 2nd Edition, McGraw-Hill, New York, New York, 1970.
- K1 Gumbell, E.J., <u>Statistics of Extremes</u>, Columbia University Press, New York, 1958.
- K2 Ryder, J.T., and Walker, E.K., "Ascertainment of the Effect of Compressive Loading on the Fatigue Lifetime of Graphite Epoxy Laminates for Structural Applications", AFML-TR-76-241, December 1976.
- K3 Talreja, R., "Estimation of Weibull Parameters for Composite Material Strength and Fatigue Life Data," ASTM STP 723, Fatigue of Fibrous Composite Materials, American Society for Testing and Materials, 1981, pp. 291-311.
- K⁴ Weibull, W. and Weibull, G.W., "New Aspects and Methods of Statistical Analysis of Test Data with Special Reference to the Normal, the Log Normal and the Weibull Distributions," Part I and II, FOA Report D20045-DB, Defense Research Institute, Stockholm, Denmark, June, 1977.
- K5 Antle, C.E. and Klimko, L.A., "Choice of Model for Reliability Studies and Related Topics II", ARL-73-0121, AD 772775, 1973.
- K6 Harter, H.L. and Moore, A.H., "Maximum Likelihood Estimation of the Parameters of Gamma and Weibull Populations from Complete and Censored Data", <u>Technometrics</u>, Vol. 1, No. 4, 1965, pp. 639-643.
- K7 Bowie, G.E., Besari, M.S., and Trapp, W. J., "Experimental Mechanics: Development of Methods for Numerical Analysis of Composite Fatigue Data", Lockheed-California Company Report LR 27981, January, 1977.
- K8 Bowie, G.E., Pettit, D. E., Ryder, J.T., and Krupp, W.E., "NDI Life Analysis Interface", Lockheed-California Company Report LR 27013, September 1974.

